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Introduction

Segmentation models: definitions and notations

We observe {y1, . . . , yn} a sequence of data modeled by a random
process Y = {Y1, . . . ,Yn} with

Yt ∼ f (θt).

We suppose that there exists K + 1 change-points
t0 = 1 < . . . < tK = n such that θt is constant between two changes
and different from a change to another.

Ik =]tk−1, tk ]: interval of stationarity, θk the parameter between two
changes:

∀t ∈ Ik , Yt ∼ f (θk)

θ can stand for the mean, variance, spectrum, etc...
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Introduction

Process Segmentation vs. Online Change point detection

Sequential observations: the detection of a change should be done
with past observations only

Example: quality control, earthquake detection, ...

Main Reference: Basseville & Nikiforov (93) [3]

Sequential analysis (mainly based on tests)
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Introduction

Applications of process segmentation

Econometrics [17, 16]

Medical Imagery [18]

Climate series [22]

Biology (sequence segmentation
[6, 5], microarrays [25])

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

Market prices segmentation [19]
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Introduction

Applications of process segmentation

Econometrics [17, 16]

Medical Imagery [18]

Climate series [22]

Biology (sequence segmentation
[6, 5], microarrays [25])
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Introduction

Applications of process segmentation

Econometrics [17, 16]

Medical Imagery [18]

Climate series [22]

Biology (sequence segmentation
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Introduction

Applications of process segmentation

Econometrics [17, 16]

Medical Imagery [18]

Climate series [22]

Biology (sequence segmentation
[6, 5], microarrays [25])
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Introduction

Main contributors (non exhaustive) !

P. Perron (Boston University)

T.L. Lai (Stanford University)

D. Siegmund (Stanford University)

P. Fearnhead (Lancaster University)

P. Green (Bristol University)

M. Lavielle (INRIA, Orsay)

E. Lebarbier (AgroParisTech)

F. Picard (CNRS-LBBE) Process Segmentation RSL - Lyon June 2010 9 / 49



Introduction

Outline of the presentation

How to build the model ?

How to estimate the parameters and the location of the breaks ?

Properties of the breaks estimators ?

How many breaks ?

How to deal with dependent observations ?

The Bayesian Perspective
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The Piece-wise constant model

A piece-wise constant regression

We observe a Gaussian process (iid) Y = {Y1, . . . ,Yn} with

Yt ∼ N (µt , σ
2).

We suppose that there exists K + 1 change-points t0 < . . . < tK
such that the mean of the signal is constant between two changes
and different from a change to another.

Ik =]tk−1, tk ]: interval of stationarity, µk the mean of the signal
between two changes:

∀t ∈ Ik , Yt = µk + Et , Et ∼ N (0, σ2).
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The Piece-wise constant model

Generalization to piece-wise linear regressions

The parameter subject to changes can be E(Y (t)) and/or V(Y (t))

The model is extended to piece-wise linear regression

Ik =]tk−1, tk ]: interval of stationarity, θk the set of parameters
between two changes:

∀t ∈ Ik , Yt =

p∑
j1

θkj xj(t) + Et , Et ∼ N (0, σ2).

Difference with splines: no continuity constraint at the breaks
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The Piece-wise constant model

Parameters and estimation strategy

The parameters: t = {t0, . . . , tK}, µ = {µ1, . . . , µK} and σ2.

The estimation is done for a given K which is estimated afterwards.

The log-likelihood of the model is:

logLK (Y; t,µ, σ2) =
K∑

k=1

tk∑
t=tk−1+1

f (yt ;µk , σ
2).

When K and t are known, how to estimate µ ?

When K is known, how to estimate t ?

How to choose K ?
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The Piece-wise constant model

Penalized contrast estimators

Penalized contrast estimators are of the form:

(t̂, θ̂) = arg min
t,θ
{JK (Y; t,θ)− βpen(t)}

JK (Y; t,θ): to assess the quality of fit of the model

- locate the changepoints as accurately as possible.
- Can be broken down into local contrast (log-likelihoods)

JK (Y; t,θ) =
∑
k

log `(Y [tk−1 : tk ]; θk)

pen(t) only depends on K (increases with K )

β establishes a trade-off between the contrast and the penalty
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The Piece-wise constant model

Parameter estimation

When K and t are known the estimation of µ is straightforward:

µ̂k =
1

t̂k − t̂k−1

t̂k∑
t=t̂k−1+1

yt ,

σ̂2 =
1

n

K∑
k=1

t̂k∑
t=t̂k−1+1

(yt − µ̂k)2.

Find t̂ such that:

t̂ = arg max
t

{
logLK (Y; t,µ, σ2)

}
.
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Computational issues for breaks positioning

Dynamic Programming to optimize the log-likelihood

Partition n data points into K segments: complexity O(nK ).

DP reduces the complexity to O(n2) when K is fixed.

Analogy with the shortest path problem:

- “subpaths of optimal paths are themselves optimal”

RSSk(i , j) cost of the path connecting i to j in k segments:

∀0 ≤ i < j ≤ n, RSS1(i , j) =

j∑
t=i+1

(yt − ȳij)
2,

∀1 ≤ k ≤ K − 1, RSSk+1(1, j) = min
1≤h≤j

{RSSk(1, h) + RSS1(h + 1, j)} .
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Computational issues for breaks positioning

Dynamic Programming on very large signals ?

Even if DP reduces the computational burden to O(n2) it may be
problematic when n ∼ 106

Constraint the length of segments (lmin, lmax)

Sequential strategies (Bayesian [13])

Use the LARS framework [4]

Find a trick to the trick to decrease the complexity of DP [26]

F. Picard (CNRS-LBBE) Process Segmentation RSL - Lyon June 2010 19 / 49



Statistical properties of the estimators

Outline

1 Introduction

2 The Piece-wise constant model

3 Computational issues for breaks positioning

4 Statistical properties of the estimators

5 Model selection for segmentation models

6 The Bayesian Strategy

7 Change points detection for dependent data

F. Picard (CNRS-LBBE) Process Segmentation RSL - Lyon June 2010 20 / 49



Statistical properties of the estimators

Breaks estimator convergence

Let τ = {0 < τ0 < . . . < τK < 1} and τ ? the sequence of (true)
normalized change points

Let θ ∈ Rd and θ? be the (true) parameter subject to changes the
true vector of parameters

Let τ̂ n and θ̂n be minimum contrast estimators

If K is known, then under very mild conditions [17]

(τ̂ n, θ̂n)→
P?

(τ ?, θ?)

Note that the rate of convergence of τ̂ n is n

If K is unknown, convergence depends on βnpen(t) (Ex: K log(n)/2)

More generally βn should tend to 0 at an appropriate rate

Results include strongly mixing and strongly dependent processes
[17]
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Statistical properties of the estimators

Limit Distribution for the breaks-1

Central Ingredient to get results (δk = µk+1 − µk)

∀ε > 0, ∃C <∞, P
{
n|t̂k − t?k | < C/δ2

k

}
< ε

For one break t1, δ = µ2 − µ1, and t1 lies in a compact set

{|t1 − t?1 | < Cδ−2}

Recall that t̂1 = arg min{RSS(t1)} = arg max{RSS(t?1 )− RSS(t1)}

RSS(t0
1 )− RSS(t1) =

{
−δ2(t?1 − t1) + 2δ

∑t?1
t1+1 εt + op(1)

−δ2(t1 − t?1 )− 2δ
∑t1

t?1 +1 εt + op(1)

The distribution of these sums depends on t1
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Statistical properties of the estimators

Limit Distribution for the breaks-2

Let us define W such that W (0) = 0 and

W (m) =

{
−δ2m + 2δ

∑0
t=m+1 εt , form > 0

−δ2m + 2δ
∑m

t=1 εt , form < 0

Assuming a stricly stationary distribution for {εt} then

RSS(t?1 )− RSS(t1) = W (t1 − t?1 ) + op(1)

Using conditions (on εt) that ensure a unique max for W then

t̂1 − t?1 →
d

arg max
m

W (m)

More general results can be found in the litterature [29, 23]
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Statistical properties of the estimators

Confidence intervals for break dates

Results use limit distributions, but may be difficult to handle in
practice [30]

Many techniques use likelihood ratios and sequential analysis
[27, 28, 8]

Resampling strategies are difficult to define in the case of multiple
changes [15]

Bayesian strategies are more suitable for confidence assessment in
the case of multiple changes
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Model selection for segmentation models

Penalized contrasts to estimate the number of segment

The number of segments K should be estimated:

K̂ = arg max
K

{
logLK (Y; t̂, µ̂, σ̂2)− βpen(K )

}
.

Main difficulty: breakpoints are discrete parameters

the likelihood is not differentiable wrt t
CK−1
n−1 possible segmentations for a model with K segments.

how to define the dimension of the model ?

How to define pen(K ) ?

How to define β ?
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Model selection for segmentation models

Comparison of segmentation results

Criterion pen(K ) β
AIC 2K 1
BIC 2K log(n)/2
Lavielle 2K adaptive
mBIC f (K ,

∑
k log nk) log(n)/2

Lebarbier c1 + c1 log(n/K ) adaptive

Simulations [25] and K̂ = f (σ) with
K ? = 5
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Model selection for segmentation models

Construction of a Bayesian Criterion mBIC [31]

Define MK the segmentation model with K segments, then

mBIC(K ) =
log Pr{Y|MK}

Pr{Y|M0}

Derive an asymptotic approximation of the Bayes factor

Use asymptotic results lim
n→∞

tk/n = τk and a prior for τ of the form:

π(τ ) = g(τ )/nK , C1 < max g(τ ) < C2

In the case σ2 known we get:

mBIC(K ) = SSB(t̂)−
∑
k

log(t̂k+1 − t̂k) + (0.5−K ) log(n) + Op(1)
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Model selection for segmentation models

Penalty function in a non asymptotic framework-1

Consider the regression: Y (t) = s(t) + ε(t)

Define Sm the set of piece-wise constant functions on partition
m = {Ik}k=1,Km :

Sm =

{
u =

Km∑
k=1

ukI{Ik}, (uk)k ∈ RKm

}

The approach of Birge-Massart is to consider that s /∈ Sm but that
Sm is just an approximation set
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Model selection for segmentation models

Penalty function in a non asymptotic framework-2

Define s̄m the projection of s on Sm: it is an approximation of s but
is unknown

Define ŝm the estimator of s̄m in Sm whose quadratic risk is
E‖s − ŝm‖2

This risk can be broken down such that (bias/variance trade-off)

E‖s − ŝm‖2 = E‖s − s̄m‖2 + E‖s̄m − ŝm‖2

Bias term: E‖s − s̄m‖2 measures the distance of the unknown s to
its approximator s̄m in Sm
Variance term: E‖s̄m − ŝm‖2 measures the quality of estimation

The ideal estimator will achieve the best Bias/Variance trade-off
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Model selection for segmentation models

Penalty function in a non asymptotic framework-3

In the case of process segmentation, this framework leads to a
penalty of the form[21]

β × pen(K ) =
K

n
σ2
(
c1 + c2 log

n

K

)
(c1, c2) to be calibrated and σ2 to be estimated

Emipirical behavior: minimization of the risk can lead to a lack of
power in detection
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Model selection for segmentation models

Using the Slope heuristic-1

General heuristic that is very effective and easy to implement in
practice

Idea: construct the sequence of βi using {(pen(Ki ), JKi
)} the convex

hull of the set {(pen(K ), JK )}

βi =
JKi
− JKi+1

pen(Ki+1)− pen(Ki )

Look at the length `i of intervals [βi , βi+1] and retain the value(s) of
Ki such that `j >> `i : find the “biggest jump” of dimension

Strategy close to L-curve strategies [18]
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Model selection for segmentation models

Using the Slope heuristic-2

Normalize JK s.t. (average
slope=-1)

J̃K =
JKmax − JK
JKmax − J1

(Kmax−1)+1

Use the empirical second
derivative

D2
K = J̃K−1 − J̃K + J̃K+1

Choose the best K (S) s.t.

K̂ (S) = arg max{D2
K > S}
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blue line: contrast, red line: convex hull
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The Bayesian Strategy

Principle of the Bayesian view of process segmentation

Model determination using hierarchical modelling:

Pr{Y,µ,K} = Pr{K} × Pr{µ|K} × Pr{Y|µ,K}

Change-points {tk}k are considered as random variables with
distribution π(t;λ,K )

The objective : recover the posterior distribution: π(t|Y,µ, σ2,K )

Considering random variables makes some issues easier to assess:
confidence intervals, dependent data, uncertainty about model
choice

Computationnaly intensive: MCMC, Hasting Metropolis, Reversible
Jump, Forward-Backward Recursions
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The Bayesian Strategy

The multiple change point problem and the Reversible
Jump algorithm-1 [14]

Suppose that the number of segments is K ∼ P(λ)

With K given, breaks positions are uniformely distributed on [0; n]:

t1 < . . . < tK |K ∼ U [0; n]

Then the mean of each segment {µk}k are iid s.t.:

µ|t,K ∼ Γ(α, β)

RJ-MCMC is used to compute π(K , t,µ|Y)

F. Picard (CNRS-LBBE) Process Segmentation RSL - Lyon June 2010 36 / 49



The Bayesian Strategy

The multiple change point problem and the Reversible
Jump algorithm-2 [14]

The target distribution is π(K , t,µ|Y)

Dimension of the model change according to K : how to design
appropriate moves ?

a change to the mean of a randomly chosen segment
b change of a position of a randomly chosen break
c ‘birth’ of a new segment at a randomly chosen location on [0, n]
d ‘death’ of a randomly chosen segment
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The Bayesian Strategy

Posterior inference of change-points location

π(t|Y,µ,K ) π(µ|Y, t,K )
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The Bayesian Strategy

Limitations of the RJ-MCMC algorithm

Jumps in dimension lead to very demanding algorithms

The posterior of the mean is very smooth: not in accordance with
the “abrupt-changes” model

Reparametrization of the model with r = {rt}, a sequence of length
n s.t.:

{rt = 1} if t = tk

Use a temperature parameter during the Hastings-Metropolis
algorithm to discriminate the local and global maxima of the
posterior
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The Bayesian Strategy

A new formulation of the Bayesian change-point problem
[20]

rt ∼ B(λ), and K =
∑

t rt ∼ B(n − 1, λ)

The sequence r is of fixed length: no need of jumps in dimension to
assess π(r|Y)

The model on Y is unchanged:

∀t ∈ Ik Yt ∼ N (µk , σ
2)

The sequence of means µk is modelled s.t.

µ ∼ N (m; s2)
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The Bayesian Strategy

Back to penalized constrast estimators

For any configuration of change-points the posterior distribution of r
is

π(r|Y;θ) ∝ exp {−φRSS(r,Kr )− γKr}

This is the joint distribution of a vector of size n − 1

The MAP estimator of r is a penalized contrast estimator !

This posterior distribution can be computed with a
Hastings-Metropolis algorithm

Use SAEM [9] to estimate θ the set of hyperparameters
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The Bayesian Strategy

Running the H-M algorithm at low temperature

Strategy inspired from
Simulated Annealing algorithms

Introduce a temperature
parameter T s.t. πT (r|Y;θ)
changes to

exp

{
− φ
T
RSS(r,Kr )− γ

T
Kr

}
When T → 0, πT (r|Y;θ) CV to
the uniform distribution of the
seg of global maxima of
π(r|Y;θ)

πT (r|Y;θ) with decreasing T
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The Bayesian Strategy

Running the H-M algorithm at low temperature

Difficulties in using MCMC: how to design moves (between different
models) which enable the MCMC algorithm to mix well, and being
able to detect convergence of the chain.

Idea: use recursions inspired from the Forward-Backward algorithm
[12]

Objective : perform direct simulation from the posterior distribution
of t and K
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The Bayesian Strategy

Using point process to describe the sequence of changes

Introduce some dependency among change-points π(tk |tk−1)

Introduce a point-process on integers with g(t) > 0 the time
between two successive points (product-partition model)

G (t) =
∑t

s=1 g(s) is the distribution function of the distance
bewteend two successive points (g0(t) the mass function of the first
point after 0) then

πK (t) = g0(t1)

(
K∏

k=2

g(tk − tk−1)

)
(1− G (tk+1 − tk))

Suppose a Negative Binomial distribution for g(t) (discrete version
of Gamma distributions, k = 1 leads to Markov distrib.)

g(t) = Ck−1
t−k p

k(1− p)t−k
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The Bayesian Strategy

Basic Recursions

Define ∀s ≥ t P(t, s) = Pr{Yt:s |t, s in the same segment}
Define Q(t) = Pr{Yt:n|changepoint at t − 1}

Q(t) =
n−1∑
s=t

P(t, s)Q(s + 1)g(s + 1− t) + P(t, n)(1− G (n − t))

Then the posterior distribution of the change points is:

Pr{tk |tk−1,Y1:n} = P(tk−1 +1, tk)Q(tk +1)g(tk−tk−1)/Q(tk−1 +1)
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The Bayesian Strategy

Model selection using posterior distributions

Model selection can be performed using

π(K |Y1:n) ∝ π(K )π(Y1:n|K )

Redefine the recursion conditioning by K

Define QK
j (t) = Pr{Yt:n|tj = t − 1,K}

QK
j (t) =

n−K+j∑
s=t

P(t, s)QK
j+1(s + 1)πK (tj = t − 1|tj+1 = s)

Finally

Pr{Y1:n|K} =
n−K∑
s=1

P(1, s)QK
1 (s + 1)
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Change points detection for dependent data

The piece-wise AutoRegressive Model [16]

Piece-wise constant volatility and regression parameters
θt = (µt , α•,t)

T :

Yt = µt +
k∑

s=1

αs,tYt−s + σtεt t > k

The jump process is modeled with rt s.t. rt ∼ B(p)

Denoting by (ZT
t , γt) the set of new parameters:

(θTt , σt) = (1− rt)× (θTt−1, σt−1) + rt × (ZT
t , γt),

Forward-Backward recursions are used to calculate:

E(θT
n , σn|Y1:n)
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Change points detection for dependent data

Conclusions & perspectives

Very old/wide subject !!!

Sequential analysis are taking some new importance due to the
increase in the size of the datasets

Other projects involve the segmentation of many series [10, 24, 1, 7]

Towards semi parametric models and links with functional data
[24, 2, 11]

Slides @ http://pbil.univ-lyon1.fr/members/fpicard/
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