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From molecular to cellular variability

• Convergence between cell biology &
high-throughput sequencing

• Complexity of defining ”cell-types”

• What part of the cellular variability is
explained by the molecular variability ?

[2]
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From bulk to distributions of gene expression

[2]
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Single-Cell from a statistician’s perspective

From 10X Genomics
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Machine Learning challenges

• Dimension Reduction / Visualization

• Clustering cell-type discovery

• Datasets alignments

• Cell-cell communication

• Data integration

• Differential analysis

[1]

6 / 49



Outline

1. Challenges of sc-RNASeq Data Analysis

2. Single-Cell Differential Expression Analysis

3. Comparing Gene-Expression Distributions

4. Introduction to kernels in machine learning

5. Performance of kernel testing

6. Beyond Gene-Wise Differential expression analysis

7. Conclusions and perspectives
7 / 49



Differential Expression Analysis

• Compare the expression of each genes
between 2 or more conditions

• Task: Statistical Testing
→ compute the difference
→ compute a risk

• Single-cell data n ∼ 100− 10, 000

• How to fully exploit the potential of
single-cell assays ?
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Two-sample test basic ingredients

• Consider the expression of one gene

• X1,i expression in condition 1 for cell i

• X2,i expression in condition 2 for cell i

E(X1,i ) = µ1, E(X2,i ) = µ2

• Variability of gene expression

V(X1,i ) = V(X2,i ) = σ2
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Two-sample hypothesis testing

• Statistical testing of H0 :
{
µ1 = µ2

}
• Use the concept of Signal-to-Noise Ratio

SNR2 =

(
µ1 − µ2

σ/
√
n

)2

• Also called log-fold change on the
log-scale
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Two-sample hypothesis testing procedure

• Is the observed logFC high under the null
hypothesis of no difference ?

• If High the data do not support the
hypothesis H0

→ Reject H0

• Compute the p-value
→ proba. of observing the data if H0

were true

• Reject if the p-value < α
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Statistical Setting: two-sample test

• logFC are valid provided µ and σ are
good summaries of the information

• Easy linear separation

• Not adapted to single-cell assays

Gaussian 
Distribution

easy separation
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sc-RNAseq data are count data

• Specificities: discrete, zeros

• How to define the signal-to-noise ratio ?

• Standard: Negative Binomial distribution

• No simple linear separation

Negative-Binomial
Distributions

heavy dispersion

Importance of 
zero counts

No Simple 
separation
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sc-RNASeq are complex distributions
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Difference in Expression Different Modes Different Proportions Difference in Both

Differential Expression Scenarios
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What about other single-cell data ?

• Single-Cell ChipSeq has become popular

• Map binding sites in population of cells

• Differential Analysis is also a challenge

• Should we build a new reference model
for each single-cell assay ?

https://tunetx.com/
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Why is statistical modeling so important ?

• Much energy has been spent to understand the distribution of sc-RNASeq data

• Statistical testing is based on what is expected under H0

→ Risk: detect a difference whereas the appropriate model there would not
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Take-Home Message Slide (1)

✓ Single-cell data are complex distributions

✓ the logFC may not be adapted to every situation

✓ Only based on summary statistics

✓ A dedicated framework is required to perform differential analysis based on distributions
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How to compare complex distributions ?

• Consider that Xi ,1 ∼ P1, Xi ,2 ∼ P2, such that P1 and P2 are unknown

• P1,P2: gene expression distribution across cells

• Single-cell differential expression can be tested using:

H0 :
{
P1 = P2

}
• How to construct a powerful and calibrated test ?
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Re-interpreting the Signal-to-Noise Ratio

• Consider the Signal to Noise Ratio for aggregated (bulk) data:

SNR2 ∝

(
µ1 − µ2

)2

σ2
=

Distance between averaged populations

variability

• The signal has too parts: (
µ1 − µ2

)2
= µ2

1 − 2µ1µ2 + µ2
2

• Intensity of expression in each group :

µ2
1 + µ2

2

• Distance between averaged groups
µ1µ2

• Pseudo Bulk Analysis (average single cell data)
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Pair-Wise Distances in Single-Cell Assays

• Provides much more information : pair-wise distances between individual cells

• Intra-condition distances

1

n21

n1∑
i=1

n1∑
i ′=1

dist(Xi ,1,Xi ′,1) and
1

n22

n2∑
i=1

n2∑
i ′=1

dist(Xi ,2,Xi ′,2)

→ If small, conditions are homogeneous
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Statistical Testing with pair-wise distances

Reject Accept
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Pair-Wise Distances in Single-Cell Assays

• Provides much more information : pair-wise distances between individual cells

• Inter-condition distance
1

n1

1

n2

n1∑
i=1

n2∑
i ′=1

dist(Xi ,1,Xi ′,2)

→ If high, conditions are well separated
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Statistical Testing with pair-wise distances

Reject Accept
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Intra-Inter trade-off

• Separated Conditions:
ΣWithin ≪ ΣBetween

• Similar conditions :
ΣWithin ∼ ΣBetween

• Construct the discriminant ratio

R = Σ−1
WithinΣBetween

• Investigate the variations of the ratio under H0
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Take-Home Message Slide (2)

✓ Standard Differential Expression procedures can be applied by averaging data (pseudo
bulk)

✓ Propose tests based on distributions comparisons

✓ Use pair-wise distances as a metric between distributions

✓ Use the discriminant ratio as a statistic
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What if the distributions are difficult to discriminate ?

• sc-RNASeq distributions are complex

• Separation between condition is difficult

• Requires non-linear methods

• Could we find a transform such that they
become easy to separate ?

→ This is possible thanks to kernel embedding
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What is an embedding ?

• An embedding is a transformation of the
data

Xi → ϕ(Xi )

• Easy separation after transformation

• Very popular for dimension reduction
→ UMAP, tSNE

• How to choose ϕ ? Input Space Feature Space
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What is a kernel (in one slide)?

• When data are not separable

• dist. in the input space won’t work

• dist. in the feature space could work !

• Kernel: distance between embeddings

K (Xi ,1,Xi ,2) = dist
(
ϕ(Xi ,1), ϕ(Xi ,2)

)
• Can work with any input data
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Like a ”Kernel Testing” Spirit

Reject Accept
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How to choose the kernel ?

• Kernel trick : no need to choose ϕ, only the kernel is necessary

• Popular kernel : Gaussian kernel

K (Xi ,1,Xi ,2) ∝ exp

{
−1

2

(
Xi ,1 − Xi ,2

h

)2
}

• Kernel trick : when you define a kernel you define the transform ϕ implicitly

• It can be considered as a non linear metric between distributions
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Kernel Embedding separates complex distributions
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Take-Home Message Slide (3)

✓ Transform the data using an embedding

✓ Compute the pair-wise distances between embeddings

✓ The kernel is a non linear distance between distributions

✓ A Kernel Two Sample Test : 2012 paper, > 5000 citations !
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Methods comparison on experimental datasets
• 18 published datasets [3] / 20 methods
• Compare AUCCs based on reference gene lists
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Methods comparison on experimental datasets

• 18 published datasets [3] / 20 methods

• Check the summary statistics characteristics of rejected distributions
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Methods comparison on experimental datasets
• 18 published datasets [3] / 20 methods
• Check distribution forms of rejected hypothesis
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Take-Home Message Slide (4)

✓ Kernel testing is powerful and calibrated on experimental data

✓ Kernel testing does not share the same bias as classical DEA methods

✓ Kernel testing identifies complex distribution changes
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Strong dependencies and lots of data

• Gene Expressions are highly dependent

• Account for GRN

• Could Differential Analysis be done on a
set of genes ? whole transcriptome ?

• Kernels can be generalized to whole
transcriptomes

Distribution of gene expression across cells
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Transcriptomic Differential Analysis
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ChemoResistance in Triple Negative Breast Cancer

• Emergence of resistant phenotypes is a
multi-step process

• After drug insult only a pool of
drug-tolerant persister cells manage to
tolerate the treatment and survive.

• Reservoir from which drug-resistant cells
can ultimately emerge.
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Kernel testing on Persister vs. Naive cells

• Persister cells survived the first treatment

• Reservoir for resistant cells

• Epigenomic data: 6376 features

• Compare untreated (∼ 3000 cells) vs.
persister (∼ 2000 cells)

• Did we identify the reservoir of persister
cells based on their epigenomic signatures
?
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Take-Home Message Slide (5)

✓ Differential Analysis can be performed on sets of genes or whole transcriptomes

✓ Accounts for dependencies between gene expressions

✓ Kernel methods can be easily adapted

✓ Allows the identification of sup-population of cells
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What are the specific challenges ?

• Being understood by an audience of biologists

• Waiting for the editorial decision !

• Computing the risk of the procedure accurately

(super)-hot topic in machine learning

• Generalize the approach to spatial transcriptomics

(super)-hot topic in sc-data analysis
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Check out !

• The ktest package ! Python-R,

https://github.com/AnthoOzier/ktest

• The arxiv preprint

https://arxiv.org/abs/2307.08509
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