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Outline

1. Challenges of sc-RNASeq Data Analysis
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From molecular to cellular variability

-
-
-
e Convergence between cell biology &
high-throughput sequencing -

e Complexity of defining " cell-types”
® What part of the cellular variability is
explained by the molecular variability ?

]
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From bulk to distributions of gene expression

- . interact :
neoplastic non-neoplastic
functionally and/or genetically T-cells B-cells dendritic cells, fibroblasts,
. distinct subpopulations endothelial cells, NK cells, etc
‘@
. 4

oo ~®

bulk (average) single-cell [2]

gene expression
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Single-Cell from a statistician’s perspective

[ 1
Single-Cell Analysis /\./ ‘

)

Tissue

Bulk Analysis ; ;

Bulk RNA input

From 10X Genomics

Single-Cell input

Mhl"
2 3.0 2

Each cell type has a distinct
expression profile

e

Average gene expression Cellular heterogeneity
from all cells masked

Reveals heterogeneity
and subpopulation
expression variability of
thousands of cells
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Machine Learning challenges
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Outline

2. Single-Cell Differential Expression Analysis
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Differential Expression Analysis

A cell B cell

e ® o 3
e o o e o

Compare the expression of each genes
between 2 or more conditions \ 7/
Task: Statistical Testing scRNA-seq

— compute the difference

— compute a risk

Single-cell data n ~ 100 — 10,000

How to fully exploit the potential of
single-cell assays 7

Differential expression analysis
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Two-sample test basic ingredients

Expression level

® Consider the expression of one gene ® o ) ..
® Xy, expression in condition 1 for cell i ..‘ ws .‘ @ ®
® X, ; expression in condition 2 for cell i ... () ’ @
e ©¢ O
E(X1,) = p1, E(X2i) = p2 —r—>
Deviations from global mean
® Variability of gene expression PRI

B o ‘ @ ~..
V(X)) =V(Xo) =0 @

| | oqob’f.

o® 0% @®
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Two-sample hypothesis testing

Expression level

e Statistical testing of Hp : {ul = ,ug}
e Use the concept of Signal-to-Noise Ratio
SNR2 — (Ml - Mz)z
o/vn

® Also called log-fold change on the
log-scale
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Two-sample hypothesis testing procedure

Expression level

® |s the observed logFC high under the null ®
hypothesis of no difference ? '. @ s ® Q..
e |f High the data do not support the ‘ wg .. .‘
hypothesis Hg ...
— Reject Ho e © ©
° Compute the p—value Deviations from global mean
— proba. of observing the data if H PO

were true .‘ O ~..

® Reject if the p-value < « *)"
... ®
o® 0% @
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Statistical Setting: two-sample test

easy separation

Gaussian

® logFC are valid provided i and o are pisiibution

good summaries of the information
® Easy linear separation o 3\

® Not adapted to single-cell assays

H1 H2
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sc-RNAseq data are count data

Specificities: discrete, zeros
How to define the signal-to-noise ratio ?
Standard: Negative Binomial distribution

No simple linear separation

Importance of
zero counts

Negative-Binomial
Distributions

\ No Simple

\ separation

heavy dispersion

M1 M2
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sc-RNASeq are complex distributions

Difference in Expression Different Modes Different Proportions Difference in Both

Raw data

Differential Expression Scenarios
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What about other single-cell data

Single-Cell ChipSeq has become popular

Map binding sites in population of cells

Differential Analysis is also a challenge

Should we build a new reference model =
for each single-cell assay ?

https://tunetx.com/
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Why is statistical modeling so important ?

® Much energy has been spent to understand the distribution of sc-RNASeq data
e Statistical testing is based on what is expected under Hy

Lietal GenomeBiology ~ (2022)23:79

https:/doi.org/10.1186/513059-022-02648-4 Genome BIO|Ogy

Exaggerated false positives by popular
differential expression methods when analyzing
human population samples

Yumei Li'!, Xinzhou Ge?", Fanglue Peng?, Wei Li'" and Jingyi Jessica Li%**7"

— Risk: detect a difference whereas the appropriate model there would not
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Take-Home Message Slide (1)

v Single-cell data are complex distributions
v’ the logFC may not be adapted to every situation
v" Only based on summary statistics

v' A dedicated framework is required to perform differential analysis based on distributions
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Outline

3. Comparing Gene-Expression Distributions
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How to compare complex distributions ?

Consider that Xj 1 ~ Py, Xi2 ~ P2, such that P; and P> are unknown

P1,P>: gene expression distribution across cells

Single-cell differential expression can be tested using:

Ho : {1@1 - IP’z}

How to construct a powerful and calibrated test ?

Different Modes

Different Proportions

A

N
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Re-interpreting the Signal-to-Noise Ratio

e Consider the Signal to Noise Ratio for aggregated (bulk) data:

2
SNRZ o (Ml - /‘2> _ Distance between averaged populations
5 =
o

variability

The signal has too parts:

2 _ 2
(Ml - Mz) = p1 — 2u1p2 + o

Intensity of expression in each group :

13 + 15

Distance between averaged groups
12

Pseudo Bulk Analysis (average single cell data)
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Pair-Wise Distances in Single-Cell Assays

® Provides much more information : pair-wise distances between individual cells

® |ntra-condition distances

n2zzn:dlst , 2zzn:d|5t ,27X/2
1

i=1i'=1 i=1i'=1

— If small, conditions are homogeneous
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Statistical Testing with pair-wise distances

diSt(Xi,l, Xi,l)

diSt(Xi,g, Xi,2)

EWithin < 2Between

Accept Hg

-t 3”-

|}
)

EWxthm > Z:Bet;ween
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Pair-Wise Distances in Single-Cell Assays

® Provides much more information : pair-wise distances between individual cells

® |nter-condition distance
n n2

,;llr:’lzZZdISt( ,X;/’Q)

i=1i'=1

— If high, conditions are well separated
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Statistical Testing with pair-wise distances

diSt(Xi,l, Xi,l)

diSt(Xi,g, Xi,2)

EWithin < 2Between

Accept Hg

-t 3”-

|}
)

EWxthm > Z:Bet;ween
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Intra-Inter trade-off

® Separated Conditions:

ZWithin < ZBetween
® Similar conditions :

2 Within ~ 2-Between
® Construct the discriminant ratio

R=Yyi,. ¥

Within ©—Between

[ ]

Investigate the variations of the ratio under Hg
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Take-Home Message Slide (2)

v' Standard Differential Expression procedures can be applied by averaging data (pseudo
bulk)

v' Propose tests based on distributions comparisons
v' Use pair-wise distances as a metric between distributions

v' Use the discriminant ratio as a statistic
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Outline

4. Introduction to kernels in machine learning
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What if the distributions are difficult to discriminate ?

sc-RNASeq distributions are complex

Separation between condition is difficult

® Requires non-linear methods

Could we find a transform such that they
become easy to separate ?

— This is possible thanks to kernel embedding

Raw data

Data Transform

-

Difficult to separate

Easy Separation 28 /49



What is an embedding ?

data
Xi = o(Xi)

Easy separation after transformation

Very popular for dimension reduction
— UMAP, tSNE

How to choose ¢ 7

An embedding is a transformation of the

¢
Y \7, (X ()(.\‘,)
Xs d(X9)
X4 ?(X3)

Xl o(Xs) -
X2 X3 B(X¢) T e(Xy)

X S

P(X1)

Input Space Feature Space
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What is a kernel (in one slide)?

When data are not separable ¢

dist. in the input space won't work /_\

® dist. in the feature space could work ! : X- s(x) (X8
® Kernel: distance between embeddings Xy & P(X3) P(X>)
. X1 - d(Xs5) - '
- X2 X3 (Xo) S P(Xa)
K(Xi1, Xi2) = d|st(¢(Xi,1), ¢(Xi,2)) X S
So(X)
® Can work with any input data dist (X1, Xi 2) dist(¢(Xi1), p(Xi2))
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Like a ” Kernel Testing” Spirit
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How to choose the kernel ?

Kernel trick : no need to choose ¢, only the kernel is necessary

Popular kernel : Gaussian kernel

1 Xi —X,' 2
K(Xi 1, Xi2) o< exp {—2 <1h2> }

Kernel trick : when you define a kernel you define the transform ¢ implicitly

It can be considered as a non linear metric between distributions
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Kernel Embedding separates complex distributions

Difference in Expression Different Modes Different Proportions Difference in Both

Raw data

Discriminant axis
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Take-Home Message Slide (3)

v' Transform the data using an embedding

v" Compute the pair-wise distances between embeddings

v" The kernel is a non linear distance between distributions

v A Kernel Two Sample Test : 2012 paper, > 5000 citations !
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Outline

5. Performance of kernel testing
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Methods comparison on experimental datasets

® 18 published datasets [3] / 20 methods
® Compare AUCCs based on reference gene lists
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Methods comparison on experimental datasets

® 18 published datasets [3] / 20 methods
® Check the summary statistics characteristics of rejected distributions

DESeq2-LRT — e i TS e
edgeR-LRT{ = EEEm=sh——rt Lgag 5 T S e
edgeR-QLF o RSt D gt i T S e

DESeq2-Wald —~ Rt O —
| -
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Methods comparison on experimental datasets

® 18 published datasets [3] / 20 methods
® Check distribution forms of rejected hypothesis

Genes

BIRC3

SPCS2

LAMTOR1

PYURF

TMEM165

MRFAP1

TRA2B

DNAJC19

CCNL1

DHX36

la a
f\\/f\ _ RPL10A ‘ / \\
i 7 N

A/v\ ATPSMC K fv/*\ —

-— ACTR3 - 7/:\\

3 3 6 [ 10 12 [ 3 1 6
gene expression gene expression

Non DE in pseudo Bulk - Non DE in scDEA methods

12

38/49



Take-Home Message Slide (4)

v" Kernel testing is powerful and calibrated on experimental data
v" Kernel testing does not share the same bias as classical DEA methods

v Kernel testing identifies complex distribution changes
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6. Beyond Gene-Wise Differential expression analysis
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Strong dependencies and lots of data

Gene Expressions are highly dependent
Account for GRN

Could Differential Analysis be done on a
set of genes 7 whole transcriptome ?

Kernels can be generalized to whole
transcriptomes

Distribution of gene expression across cells
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Transcriptomic Differential Analysis

Gene 1
univariate distribution

Gene 2
univariate distribution

Joint distribution Summary Representation
Input Space Feature Space
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ChemoResistance in Triple Negative Breast Cancer

on

> PDX_95
® Emergence of resistant phenotypes is a 20 | first round @ second round g

multi-step process

=)

15 untreated
[~

e After drug insult only a pool of
drug-tolerant persister cells manage to
tolerate the treatment and survive.

resistant  recufrent

Relative Tumor Volume
=

YW
. . . 51/] N
® Reservoir from which drug-resistant cells o QA M
- & 7 erssier | AV
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e
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43 /49



Kernel testing on Persister vs. Naive cells

® Persister cells survived the first treatment
® Reservoir for resistant cells
® Epigenomic data: 6376 features

e Compare untreated (~ 3000 cells) vs.
persister (~ 2000 cells)

Intermediate

® Did we identify the reservoir of persister

cells based on their epigenomic signatures
-

Persister-Lijke

Summary of Whole Epigenome differences
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Take-Home Message Slide (5)

v' Differential Analysis can be performed on sets of genes or whole transcriptomes
v Accounts for dependencies between gene expressions
v" Kernel methods can be easily adapted

v' Allows the identification of sup-population of cells
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Outline

7. Conclusions and perspectives
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What are the specific challenges ?

® Being understood by an audience of biologists

® Waiting for the editorial decision !

® Computing the risk of the procedure accurately
J IJd (super)-hot topic in machine learning

® Generalize the approach to spatial transcriptomics
J I (super)-hot topic in sc-data analysis
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Check out !

® The ktest package ! Python-R,

https://github.com/Antho0zier/ktest

® The arxiv preprint

https://arxiv.org/abs/2307.08509
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https://github.com/AnthoOzier/ktest
https://arxiv.org/abs/2307.08509
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