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Looking for local sub-structures in real-networks

I Breaking-down complex networks

into functional modules:

→ patterns of interconnection,

→ network motifs.

I Application in Biology:

→ transcriptional regulatory modules

→ Example: feed-forward loop.

I Exceptionality of a motif?

→ when a given motif appears more

frequently than expected.

From Shen-Orr et al.(2002)
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How to assess the exceptionality of a motif

I Count the observed number Nobs(m) of a given motif m (out of our scope)

I Assess its significance with a p−value : need to calculate P{N(m) ≥ Nobs(m)}

I Current strategy (Shen-Orr et al.):

→ use simulations to calculate E(N) and V(N) under a reference model

→ use a Z−score to calculate the p−value (implies a Gaussian approximation).

CONTRIBUTION

1 Give an analytic expression of the mean and the variance of the count,

2 Propose another distribution to better approximate the count distribution.
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Definition of a motif in random graphs

I A random graph is defined by :

→ V of fixed vertices with |V| = n.

→ X = {Xij, (i, j) ∈ V2} a set of random edges such that Xij equals 1 if nodes i

and j are connected, and 0 otherwise.

→ A distribution on Xij. Example: the Erdös-Rényi model: P(Xij = 1) = p.

I exchangeability hypothesis: P(Xij) does not depend on (i, j).

I m stands for a motif of size k: connected subgraph with k vertices,

I It is defined by a fixed topology through its adjacency matrix also denoted by m such

that muv = 1, if nodes u, v are connected in the motif
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Example: the V motif

I 3 versions of the V motif at a fixed position α = (i, j, k).
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Position and occurrence of a motif

I Let α be a possible position of m. We consider that α is an ordered k−tuple with

i1 < . . . < ik.

I We introduce the random indicator variable Yα(m) which equals one if motif m

occurs at position α and 0 otherwise :

Yα(m) =
Y

1≤u<v≤k

(Xiuiv)
muv .

I Under the exchangeability assumption, the distribution of Yα does not depend on α.

Denoting µ(m) the probability of occurrence of motif m, we have

Yα(m) ∼ B(µ(m))

I The number of occurrences of m is then N(m) =
P

α∈Ik

P
? Yα(m).
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Redundancy and Motif permutation
I For a given position, permutations of vertices of m can lead to the same motif

aut(V) = {Id, (2, 3)}

1 1

3 232

=
|aut(m)| 2 6 6 8

ρ(m) 3 1 4 3

I We define R(m), the set of non redundant permutations of m, ρ(m) = |R(m)|.

I ρ(m) is calculated with the k! simultaneous permutations of the rows and columns of

m.

I The count of motif m is: N(m) =
P

α∈Ik

P
m′∈R(m) Yα(m′).

I We aim at calculating the mean of the count

EN(m) = |Ik| ×
X

m′∈R(m)

EYα(m′
) =

“n

k

”
ρ(m)µ(m).
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Calculating the variance is more intricate...

N2(m) =
P

α,β∈Ik

P
m′,m′′∈R(m) Yα(m′)Yβ(m′′)

1

4

2

3

I m : V motif

I m′ occurs at α = (1, 2, 4), m′′ occurs at β = (2, 3, 4),

I In this case α ∩ β = (2, 4)

I The super-motif denoted by m′Ω
s
m′′ is the union of two versions of m

→ In this case, the super-motif is the so-called whisk graph motif

I We need to define:

→ the adjacency matrix of the super-motif m′Ω
s
m′′

→ the non-redundant permutations of m′Ω
s
m′′.
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Adjacency matrix for super-motifs

I we break down m′ and m′′ such that:

m′
=

0BBB@
m′

11
(k−s)×(k−s)

m′
12

(k−s)×s

m′
21

s×(k−s)

m′
22

s×s

1CCCA , m′′
=

0BBB@
m′′

11
s×s

m′′
12

s×(k−s)

m′′
21

(k−s)×s

m′′
22

(k−s)×(k−s)

1CCCA ,

where m′
22 and m

′′
11 correspond to vertices in α ∩ β,

I We set:

m′
Ω
s
m′′

=

0BBBB@
m′

11 m′
12 0

m′
21 max(m′

22, m
′′
11) m′′

12

0 m′′
21 m′′

22

1CCCCA .

I The max function in the central term indicates that for the s common vertices of α

and β, all edges of m′
22 and m′′

11 must be present. It is equivalent to the logical OR.

8



New formulation for the squared count

I Each term of the sum depends on s, the number of shared vertices between α and β

I If s = 0, Yα and Yβ are independent and E [Yα(m)Yβ(m)] = EYα(m)EYβ(m)

I ∀s ≥ 1, Yα(m′)Yβ(m′′) = Yα∪β(m′Ω
s
m′′).

I The squared count can be rewritten as:

N
2
(m) =

kX
s=0

X
α, β ∈ Ik :

|α ∩ β| = s

X
m′,m′′∈R(m)

Yα∪β(m
′
Ω
s
m′′

),

I The expectation of the squared count is:

EN
2
(m) = C1(n, k)

24 X
m′∈R(m)

µ(m′
)

352

+
kX

s=1

C2(n, k, s)
X

m′,m′′∈R(m)

µ(m′
Ω
s
m′′

).
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Calculating µ(m) in ER and ER mixture models

I E(N) and V(N) depend on µ(m) which depend on P{X} (exchangeable)

I In the Erdös-Rényi model with parameter π, (m++ the number of edges in m):

µER(m) = π
m++

I ERMG is an alternative model. We suppose that nodes are spread among Q hidden

classes with proportion α1, . . . , αQ.

→ We denote by Zis the independent random variables which equal q if node i

belongs to class q, then Xij|{Zi = q, Zj = `} ∼ B(πq`).

→ Under ERMG, we have:

µERMG(m) =

QX
c1=1

. . .

QX
ck=1

αc1
. . . αck

Y
1≤u<v≤k

π
muv
cucv

.
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Calculating µ(m) for Expected-Degree Distribution models

I EDD generates graphes whose degrees follow a given distribution,

P{Xij = 1|DiDj} = γDiDj

I ”exchangeable” version of the Fixed Degree Distribution model (FDD),

I µ(m) can be calculated

µEDD(m) = γ
m++/2

kY
u=1

E
“

D
mu+
iu

”
.

I µEDD(m) only depends on the product of some moments of the expected degree D.
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Comparison of theoretical moments on PPI networks

EN(m) ̂EN(m)

Ecoli Nobs ER EDD ERMG FDD

V 248,093 52,744.70 99,126.40 243,846.93 248,093

triangle 11,368 72.47 2,197.38 10,221.17 3,579.49

chain 9,557,956 399,151.00 2,339,200.00 9,555,414.55 5,950,903.40

star 6,425,495 133,050.00 1,537,740.00 5,772,005.15 6,425,495

square 487,408 411.31 38,890.60 417,190.55 76,467.39

whisker 2,154,048 1,645.22 306,789.00 1,929,516.68 547,802.44

halfclique 273,621 3.39 20,117.90 204,093.45 18,422.25

clique 14,882 0.00 867.24 8,904.75 317.27

First remark: the choice of the model has a strong influence on the first two moments.

This influence depends on the topology of the motif.
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Comparison of theoretical moments on PPI networks

EN(m) ̂EN(m)

Ecoli Nobs ER EDD ERMG FDD

V 248,093 52,744.70 99,126.40 243,846.93 248,093

triangle 11,368 72.47 2,197.38 10,221.17 3,579.49

chain 9,557,956 399,151.00 2,339,200.00 9,555,414.55 5,950,903.40

star 6,425,495 133,050.00 1,537,740.00 5,772,005.15 6,425,495

square 487,408 411.31 38,890.60 417,190.55 76,467.39

whisker 2,154,048 1,645.22 306,789.00 1,929,516.68 547,802.44

halfclique 273,621 3.39 20,117.90 204,093.45 18,422.25

clique 14,882 0.00 867.24 8,904.75 317.27

- The expected count of V and star under ER and EDD are far from the observed count.

- Due to observed nodes with high degree which generate lots of occurrences of those

motifs.
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Comparison of theoretical moments on PPI networks

EN(m) ̂EN(m)

Ecoli Nobs ER EDD ERMG FDD

V 248,093 52,744.70 99,126.40 243,846.93 248,093

triangle 11,368 72.47 2,197.38 10,221.17 3,579.49

chain 9,557,956 399,151.00 2,339,200.00 9,555,414.55 5,950,903.40

star 6,425,495 133,050.00 1,537,740.00 5,772,005.15 6,425,495

square 487,408 411.31 38,890.60 417,190.55 76,467.39

whisker 2,154,048 1,645.22 306,789.00 1,929,516.68 547,802.44

halfclique 273,621 3.39 20,117.90 204,093.45 18,422.25

clique 14,882 0.00 867.24 8,904.75 317.27

- The expected count under ERMG for triangle, halfclique and clique are close to the

observed count

- Those motifs are linked to local clustering trends which are well captures by ERMG.
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Comparison of theoretical moments on PPI networks

p
VN(m)

q
̂VN(m)

Ecoli Nobs ER EDD-E ERMG FDD

V 248093 1281.87 20851.70 51676.68 0

triangle 11368 8.90 797.30 3041.98 68.58

chain 9557956 14743.70 774109.00 3019630.93 67739.86

star 6425495 5089.62 484152.00 1672086.51 0

square 487408 29.14 19122.60 170502.21 1117.56

whisker 2154048 214.52 145764.00 739836.65 15593.00

halfclique 273621 2.04 12876.60 94018.80 891.99

clique 14882 0.05 707.94 4660.71 32.96

- When using the Fixed Degree Distribution model, the variance is systematically smaller

- Extreme case for the V and star motifs for which the degree exactly defines the

number of occurrences
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Compound Poisson approximation

I Exceptionality is assessed with P{N(m) ≥ Nobs(m)}, where N(m) the random

number of occurrence of m under the reference model.

I network motifs tend to overlap : clumps are present in the graph and C stand for the

number of clumps (random)

I Denoting by Si the size of clump i, we have N(m) =
PC

i=1 Si(m).

I If we make the hypothesis that C ∼ P(λ), N(m) is compound Poisson

→We use the Geometric-Poisson distribution : we suppose that Si(m) ≈ G(1−a).

→ Then we approximate the distribution of N(m) ≈ CP(λ, a).

→ Parameters (λ, a) can be calculated according to EN(m) and VN(m)

a = [EN(m)− VN(m)]/[EN(m) + VN(m)], λ = (1− a)EN(m).

16



Simulated count distributions
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- The shape of the distribution highly depends on the model (whatever the motif)

- FDD generates symetrical distributions (reflect the constraint of the model)

- EDD generates highly skewed distributions (diversity of visited configurations)
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Conclusions for the simulation study

I Criteria used to assess the goodness of fit:

→ The Kolmogorov-Smirnoff distance between theoretical and empirical distributions

→ Empirical probabilities of exceeding the 0.999 quantile. It should be close to 0.001.

I The Geometric-Poisson approximation outperforms the Gaussian approximations for

both criteria in all cases.

I The 0.999 quantile is underestimated by the Gaussian approximation:

→ the Gaussian approximation can lead to false positive results

I The KS distance is high for both approximations in some cases, especially for frequent

and highly self overlapping motifs.

I However the clumps size distribution is not geometric...
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Exceptional motifs in PPI networks

Hpylo Nobs FDD-PvPA EDD-PvPA ERMG-PvPA

V 14113 - 4.13e−01 4.06e−01

triangle 75 4.36e−03 9.06e−01 3.31e−01

chain 98697 1.22e−05 7.42e−01 4.12e−01

star 112490 - 3.65e−01 2.34e−01

square 1058 1.80e−52 6.15e−01 1.33e−02

whisker 3535 1.11e−02 8.58e−01 2.63e−01

halfclique 79 2.54e−05 7.51e−01 3.11e−02

clique 0 1.00e−00 1.00e−00 8.50e−01

- Using the FDD model leads to very drastic results (constant accross examples)

- When everything is exceptional the model should be questioned !

- For ERMG, 2 motifs are exceptional in the PPI network of H. Pylori
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Exceptional motifs in PPI networks

Ecoli Nobs FDD-PvPA EDD-PvPA ERMG-PvPA

V 248093 - 1.24e−08 4.46e−01

triangle 11368 0.00e+00 7.02e−13 3.30e−01

chain 9557956 0.00e+00 2.33e−10 4.68e−01

star 6425495 - 1.14e−11 3.26e−01

square 487408 0.00e+00 3.48e−23 3.10e−01

whisker 2154048 1.03e−265 1.15e−12 3.49e−01

halfclique 273621 1.24e−115 1.09e−17 2.14e−01

clique 14882 2.61e−41 3.30e−15 1.09e−01

- The behavior of the EDD model is not satisfactory

- Motifs are either all exceptional or all non exceptional

- May be linked to a variable quality of fit of the model to the data.
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Exceptional motifs in PPI networks

Scere Nobs FDD-PvPA EDD-PvPA ERMG-PvPA

V 436131 - 6.21e−33 1.44e−01

triangle 10567 1.31e−128 1.13e−22 1.21e−06

chain 7530597 8.44e−99 8.61e−27 1.38e−01

star 12227236 - 3.11e−22 9.54e−03

square 165085 1.09e−322 3.19e−22 2.73e−02

whisker 993733 1.64e−65 9.33e−22 8.90e−04

halfclique 116667 1.71e−33 1.28e−18 7.22e−04

clique 8601 1.54e−10 3.19e−16 5.25e−06

- ERMG could be an alternative : Pvalues are moderate

- µERMG(m) depends on the number of groups

- Model averaging to stabilize the procedure
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Conclusions & future directions

I We propose a method to assess the exceptionality of network motifs.

I The method to calculate the moments of the count is general and can be applied to

any random graph model with exchangeable distribution

I The Geometric-Poisson approximation for the count distribution works well on simulated

data.

I Directions: how to assess the distribution of the clump size. Is there a general method

or does it depend on each motif ?
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