## Assessing the exceptionality of network motifs

<u>F. Picard</u><sup>\*,\*</sup>, J-J. Daudin<sup>†</sup>, M. Koskas<sup>†</sup>, S. Schbath <sup>‡</sup>, S. Robin<sup>†</sup>.

\* UMR CNRS-8071/INRA-1152, Statistique et Génome, Évry,

\* UMR CNRS-5558, Laboratoire de Biométrie et Biologie Evolutive,

<sup>‡</sup> Mathématique, Informatique et Génome, Jouy-en-Josas,

<sup>†</sup> UMR INAPG/ENGREF/INRA MIA 518, Paris.

| Statistics for Sy    | stems Biology (SSB) group        |
|----------------------|----------------------------------|
| INRA-MIG             | E. Roquain, S. Schbath,          |
| Stat. et Génome-Évry | E. Birmelé, C. Matias, V. Miele. |

- Breaking-down complex networks into functional modules:
  - $\rightarrow\,$  patterns of interconnection,
  - $\rightarrow$  network motifs.
- ► Application in Biology:
  - $\rightarrow$  transcriptional regulatory modules
  - $\rightarrow$  Example: feed-forward loop.
- ► Exceptionality of a motif? → when a given motif appears more frequently than expected.



From Shen-Orr et al.(2002)

- Count the observed number  $N_{obs}(\mathbf{m})$  of a given motif  $\mathbf{m}$  (out of our scope)
- ▶ Assess its significance with a p-value : need to calculate  $\mathbb{P}\{N(\mathbf{m}) \geq N_{obs}(\mathbf{m})\}$
- Current strategy (Shen-Orr et al.):
  - ightarrow use simulations to calculate  $\mathbb{E}(N)$  and  $\mathbb{V}(N)$  under a reference model
  - $\rightarrow$  use a Z-score to calculate the p-value (implies a Gaussian approximation).

## **CONTRIBUTION**

- 1 Give an analytic expression of the mean and the variance of the count,
- 2 Propose another distribution to better approximate the count distribution.

- ► A random graph is defined by :
  - $\rightarrow \mathcal{V}$  of fixed vertices with  $|\mathcal{V}| = n$ .

 $\rightarrow \mathbf{X} = \{X_{ij}, (i, j) \in \mathcal{V}^2\}$  a set of random edges such that  $X_{ij}$  equals 1 if nodes iand j are connected, and 0 otherwise.

 $\rightarrow$  A distribution on  $X_{ij}$ . Example: the Erdös-Rényi model:  $\mathbb{P}(X_{ij} = 1) = p$ .

- ▶ exchangeability hypothesis:  $\mathbb{P}(X_{ij})$  does not depend on (i, j).
- $\blacktriangleright$  m stands for a motif of size k: connected subgraph with k vertices,
- ▶ It is defined by a fixed topology through its adjacency matrix also denoted by  $\mathbf{m}$  such that  $\mathbf{m}_{uv} = 1$ , if nodes u, v are connected in the motif

▶ 3 versions of the V motif at a **fixed** position  $\alpha = (i, j, k)$ .



- Let  $\alpha$  be a possible position of **m**. We consider that  $\alpha$  is an ordered k-tuple with  $i_1 < \ldots < i_k$ .
- ► We introduce the random indicator variable  $Y_{\alpha}(\mathbf{m})$  which equals one if motif  $\mathbf{m}$ occurs at position  $\alpha$  and 0 otherwise :

$$Y_{lpha}(\mathbf{m}) = \prod_{1 \leq u < v \leq k} \left( X_{i_u i_v} \right)^{m_{uv}}.$$

• Under the exchangeability assumption, the distribution of  $Y_{\alpha}$  does not depend on  $\alpha$ . Denoting  $\mu(\mathbf{m})$  the **probability of occurrence** of motif  $\mathbf{m}$ , we have

$$Y_{\alpha}(\mathbf{m}) \sim \mathcal{B}(\mu(\mathbf{m}))$$

• The number of occurrences of **m** is then  $N(\mathbf{m}) = \sum_{\alpha \in I_k} \sum_{\mathbf{n}} Y_{\alpha}(\mathbf{m})$ .

## Redundancy and Motif permutation

 $\blacktriangleright$  For a given position, permutations of vertices of  ${f m}$  can lead to the same motif



▶ We define  $\mathcal{R}(\mathbf{m})$ , the set of non redundant permutations of  $\mathbf{m}$ ,  $\rho(\mathbf{m}) = |\mathcal{R}(\mathbf{m})|$ .

 ρ(m) is calculated with the k! simultaneous permutations of the rows and columns of m.

- The count of motif **m** is:  $N(\mathbf{m}) = \sum_{\alpha \in I_k} \sum_{\mathbf{m'} \in \mathcal{R}(\mathbf{m})} Y_{\alpha}(\mathbf{m'}).$
- ▶ We aim at calculating the mean of the count

$$\mathbb{E}N(\mathbf{m}) = |I_k| \times \sum_{\mathbf{m}' \in \mathcal{R}(\mathbf{m})} \mathbb{E}Y_{\alpha}(\mathbf{m}') = {\binom{n}{k}}\rho(\mathbf{m})\mu(\mathbf{m}).$$

Calculating the variance is more intricate...

$$N^{2}(\mathbf{m}) = \sum_{\alpha,\beta \in I_{k}} \sum_{\mathbf{m}',\mathbf{m}'' \in \mathcal{R}(\mathbf{m})} Y_{\alpha}(\mathbf{m}') Y_{\beta}(\mathbf{m}'')$$



- ▶ m : V motif
- ▶  $\mathbf{m}'$  occurs at  $\alpha = (1, 2, 4)$ ,  $\mathbf{m}''$  occurs at  $\beta = (2, 3, 4)$ ,
- ▶ In this case  $\alpha \cap \beta = (2, 4)$

► The super-motif denoted by  $\mathbf{m}'\Omega\mathbf{m}''$  is the union of two versions of  $\mathbf{m}$ 

 $\rightarrow$  In this case, the super-motif is the so-called whisk graph motif

- We need to define:
  - $\rightarrow$  the adjacency matrix of the super-motif  $\mathbf{m}'\Omega\mathbf{m}''$
  - $\rightarrow$  the non-redundant permutations of  $m'\Omega m''.$

 $\blacktriangleright$  we break down m' and m'' such that:

$$\mathbf{m}' = egin{pmatrix} \mathbf{m}'_{11} & \mathbf{m}'_{12} \ rac{(k-s) imes (k-s) imes s}{(k-s) imes (k-s)} & rac{m''_{11}}{s imes s} & rac{\mathbf{m}''_{11}}{s imes s} & rac{\mathbf{m}''_{12}}{s imes (k-s)} \ rac{\mathbf{m}''_{21}}{s imes (k-s) imes (k-s) imes (k-s)} \end{pmatrix}, \qquad \mathbf{m}'' = egin{pmatrix} \mathbf{m}''_{12} & rac{\mathbf{m}''_{12}}{s imes (k-s)} \ rac{\mathbf{m}''_{21}}{(k-s) imes s} & rac{\mathbf{m}''_{22}}{(k-s) imes (k-s) imes (k-s)} \end{pmatrix},$$

where  $\mathbf{m}_{22}'$  and  $\mathbf{m}_{11}''$  correspond to vertices in  $\alpha \cap \beta$ ,

► We set:

$$\mathbf{m}'_{s}_{s}\mathbf{m}'' = egin{pmatrix} \mathbf{m}'_{11} & \mathbf{m}'_{12} & \mathbf{0} \ \hline \mathbf{m}'_{21} & \max(\mathbf{m}'_{22},\mathbf{m}''_{11}) & \mathbf{m}''_{12} \ \hline \mathbf{0} & \mathbf{m}''_{21} & \mathbf{m}''_{22} \end{pmatrix}$$

► The max function in the central term indicates that for the *s* common vertices of  $\alpha$  and  $\beta$ , all edges of  $\mathbf{m}'_{22}$  and  $\mathbf{m}''_{11}$  must be present. It is equivalent to the logical OR.

- Each term of the sum depends on s, the number of shared vertices between  $\alpha$  and  $\beta$
- ► If s = 0,  $Y_{\alpha}$  and  $Y_{\beta}$  are independent and  $\mathbb{E}\left[Y_{\alpha}(\mathbf{m})Y_{\beta}(\mathbf{m})\right] = \mathbb{E}Y_{\alpha}(\mathbf{m})\mathbb{E}Y_{\beta}(\mathbf{m})$
- $\blacktriangleright \forall s \ge 1, \ Y_{\alpha}(\mathbf{m}')Y_{\beta}(\mathbf{m}'') = Y_{\alpha \cup \beta}(\mathbf{m}' \Omega \mathbf{m}'').$
- ► The squared count can be rewritten as:

$$N^{2}(\mathbf{m}) = \sum_{s=0}^{k} \sum_{\substack{\alpha, \beta \in I_{k}: \\ |\alpha \cap \beta| = s}} \sum_{\mathbf{m}', \mathbf{m}'' \in \mathcal{R}(\mathbf{m})} Y_{\alpha \cup \beta}(\mathbf{m}' \underset{s}{\Omega} \mathbf{m}''),$$

► The expectation of the squared count is:

$$\mathbb{E}N^2(\mathbf{m}) = C_1(n,k) \left[\sum_{\mathbf{m}' \in \mathcal{R}(\mathbf{m})} \mu(\mathbf{m}')\right]^2 + \sum_{s=1}^k C_2(n,k,s) \sum_{\mathbf{m}',\mathbf{m}'' \in \mathcal{R}(\mathbf{m})} \mu(\mathbf{m}' \underset{s}{\Omega} \mathbf{m}'')$$

- $\blacktriangleright$   $\mathbb{E}(N)$  and  $\mathbb{V}(N)$  depend on  $\mu(\mathbf{m})$  which depend on  $\mathbb{P}\{\mathbf{X}\}$  (exchangeable)
- ▶ In the Erdös-Rényi model with parameter  $\pi$ ,  $(m_{++}$  the number of edges in m):

$$\mu_{\mathsf{ER}}(\mathbf{m}) = \pi^{m_{++}}$$

ERMG is an alternative model. We suppose that nodes are spread among Q hidden classes with proportion α<sub>1</sub>,..., α<sub>Q</sub>.

 $\rightarrow$  We denote by  $Z_i$ s the independent random variables which equal q if node ibelongs to class q, then  $X_{ij}|\{Z_i = q, Z_j = \ell\} \sim \mathcal{B}(\pi_{q\ell}).$ 

 $\rightarrow$  Under ERMG, we have:

$$\mu_{\mathsf{ERMG}}(\mathbf{m}) = \sum_{c_1=1}^Q \dots \sum_{c_k=1}^Q \alpha_{c_1} \dots \alpha_{c_k} \prod_{1 \le u < v \le k} \pi_{c_u c_v}^{m_{uv}}$$

► EDD generates graphes whose degrees follow a given distribution,

$$\mathbb{P}\{X_{ij} = 1 | D_i D_j\} = \gamma D_i D_j$$

"exchangeable" version of the Fixed Degree Distribution model (FDD),

▶  $\mu(\mathbf{m})$  can be calculated

$$\mu_{\mathsf{EDD}}(\mathbf{m}) = \gamma^{m_{++}/2} \prod_{u=1}^{k} \mathbb{E}\left(D_{i_{u}}^{m_{u}}\right).$$

▶  $\mu_{EDD}(\mathbf{m})$  only depends on the product of some moments of the expected degree D.

|            |               |            | $\widehat{\mathbb{E}N(\mathbf{m})}$ |              |              |
|------------|---------------|------------|-------------------------------------|--------------|--------------|
| Ecoli      | $N_{\sf obs}$ | ER         | EDD                                 | ERMG         | FDD          |
|            |               |            |                                     |              |              |
| V          | 248,093       | 52,744.70  | 99,126.40                           | 243,846.93   | 248,093      |
| triangle   | 11,368        | 72.47      | 2,197.38                            | 10,221.17    | 3,579.49     |
| chain      | 9,557,956     | 399,151.00 | 2,339,200.00                        | 9,555,414.55 | 5,950,903.40 |
| star       | 6,425,495     | 133,050.00 | 1,537,740.00                        | 5,772,005.15 | 6,425,495    |
| square     | 487,408       | 411.31     | 38,890.60                           | 417,190.55   | 76,467.39    |
| whisker    | 2,154,048     | 1,645.22   | 306,789.00                          | 1,929,516.68 | 547,802.44   |
| halfclique | 273,621       | 3.39       | 20,117.90                           | 204,093.45   | 18,422.25    |
| clique     | 14,882        | 0.00       | 867.24                              | 8,904.75     | 317.27       |

First remark: the choice of the model has a strong influence on the first two moments.

This influence depends on the topology of the motif.

|            |                  |            | $\widehat{\mathbb{E}N(\mathbf{m})}$ |              |              |
|------------|------------------|------------|-------------------------------------|--------------|--------------|
| Ecoli      | N <sub>obs</sub> | ER         | EDD                                 | ERMG         | FDD          |
|            |                  |            |                                     |              |              |
| V          | 248,093          | 52,744.70  | 99,126.40                           | 243,846.93   | 248,093      |
| triangle   | 11,368           | 72.47      | 2,197.38                            | 10,221.17    | 3,579.49     |
| chain      | 9,557,956        | 399,151.00 | 2,339,200.00                        | 9,555,414.55 | 5,950,903.40 |
| star       | 6,425,495        | 133,050.00 | 1,537,740.00                        | 5,772,005.15 | 6,425,495    |
| square     | 487,408          | 411.31     | 38,890.60                           | 417,190.55   | 76,467.39    |
| whisker    | 2,154,048        | 1,645.22   | 306,789.00                          | 1,929,516.68 | 547,802.44   |
| halfclique | 273,621          | 3.39       | 20,117.90                           | 204,093.45   | 18,422.25    |
| clique     | 14,882           | 0.00       | 867.24                              | 8,904.75     | 317.27       |

- The expected count of V and star under ER and EDD are far from the observed count.
- Due to observed nodes with high degree which generate lots of occurrences of those motifs.

|            |               |            | $\widehat{\mathbb{E}N(\mathbf{m})}$ |              |              |
|------------|---------------|------------|-------------------------------------|--------------|--------------|
| Ecoli      | $N_{\sf obs}$ | ER         | EDD                                 | ERMG         | FDD          |
|            |               |            |                                     |              |              |
| V          | 248,093       | 52,744.70  | 99,126.40                           | 243,846.93   | 248,093      |
| triangle   | 11,368        | 72.47      | 2,197.38                            | 10,221.17    | 3,579.49     |
| chain      | 9,557,956     | 399,151.00 | 2,339,200.00                        | 9,555,414.55 | 5,950,903.40 |
| star       | 6,425,495     | 133,050.00 | 1,537,740.00                        | 5,772,005.15 | 6,425,495    |
| square     | 487,408       | 411.31     | 38,890.60                           | 417,190.55   | 76,467.39    |
| whisker    | 2,154,048     | 1,645.22   | 306,789.00                          | 1,929,516.68 | 547,802.44   |
| halfclique | 273,621       | 3.39       | 20,117.90                           | 204,093.45   | 18,422.25    |
| clique     | 14,882        | 0.00       | 867.24                              | 8,904.75     | 317.27       |

- The expected count under ERMG for triangle, halfclique and clique are close to the observed count
- Those motifs are linked to local clustering trends which are well captures by ERMG.

|            |               | $\sqrt{\mathbb{V}N(\mathbf{m})}$ |           |            | $\sqrt{\mathbb{V}\widehat{N(\mathbf{m})}}$ |
|------------|---------------|----------------------------------|-----------|------------|--------------------------------------------|
| Ecoli      | $N_{\sf obs}$ | ER                               | EDD-E     | ERMG       | FDD                                        |
|            |               |                                  |           |            |                                            |
| V          | 248093        | 1281.87                          | 20851.70  | 51676.68   | 0                                          |
| triangle   | 11368         | 8.90                             | 797.30    | 3041.98    | 68.58                                      |
| chain      | 9557956       | 14743.70                         | 774109.00 | 3019630.93 | 67739.86                                   |
| star       | 6425495       | 5089.62                          | 484152.00 | 1672086.51 | 0                                          |
| square     | 487408        | 29.14                            | 19122.60  | 170502.21  | 1117.56                                    |
| whisker    | 2154048       | 214.52                           | 145764.00 | 739836.65  | 15593.00                                   |
| halfclique | 273621        | 2.04                             | 12876.60  | 94018.80   | 891.99                                     |
| clique     | 14882         | 0.05                             | 707.94    | 4660.71    | 32.96                                      |

- When using the Fixed Degree Distribution model, the variance is systematically smaller
- Extreme case for the  ${\bf V}$  and  ${\bf star}$  motifs for which the degree exactly defines the number of occurrences

- Exceptionality is assessed with  $\mathbb{P}\{N(\mathbf{m}) \geq N_{obs}(\mathbf{m})\}$ , where  $N(\mathbf{m})$  the random number of occurrence of  $\mathbf{m}$  under the reference model.
- network motifs tend to overlap : clumps are present in the graph and C stand for the number of clumps (random)
- Denoting by  $S_i$  the size of clump *i*, we have  $N(\mathbf{m}) = \sum_{i=1}^{C} S_i(\mathbf{m})$ .
- ▶ If we make the hypothesis that  $C \sim \mathcal{P}(\lambda)$ ,  $N(\mathbf{m})$  is compound Poisson
  - $\rightarrow$  We use the **Geometric-Poisson** distribution : we suppose that  $S_i(\mathbf{m}) \approx \mathcal{G}(1-a)$ .
  - $\rightarrow$  Then we approximate the distribution of  $N(\mathbf{m}) \approx \mathcal{CP}(\lambda, a)$ .
  - ightarrow Parameters  $(\lambda, a)$  can be calculated according to  $\mathbb{E}N(\mathbf{m})$  and  $\mathbb{V}N(\mathbf{m})$

 $a = [\mathbb{E}N(\mathbf{m}) - \mathbb{V}N(\mathbf{m})]/[\mathbb{E}N(\mathbf{m}) + \mathbb{V}N(\mathbf{m})], \quad \lambda = (1-a)\mathbb{E}N(\mathbf{m}).$ 



- The shape of the distribution highly depends on the model (whatever the motif)
- FDD generates symetrical distributions (reflect the constraint of the model)
- EDD generates highly skewed distributions (diversity of visited configurations)

- Criteria used to assess the goodness of fit:
  - $\rightarrow$  The Kolmogorov-Smirnoff distance between theoretical and empirical distributions
  - $\rightarrow$  Empirical probabilities of exceeding the 0.999 quantile. It should be close to 0.001.
- The Geometric-Poisson approximation outperforms the Gaussian approximations for both criteria in all cases.
- ► The 0.999 quantile is underestimated by the Gaussian approximation:
  - $\rightarrow$  the Gaussian approximation can lead to false positive results
- The KS distance is high for both approximations in some cases, especially for frequent and highly self overlapping motifs.
- ► However the clumps size distribution is not geometric...

| Hpylo      | $N_{\sf obs}$ | FDD-Pv $_{\mathcal{P}\mathcal{A}}$ | ${\sf EDD}{\sf -}{\sf Pv}_{\mathcal{P}\mathcal{A}}$ | $ERMG\text{-}Pv_{\mathcal{P}\mathcal{A}}$ |
|------------|---------------|------------------------------------|-----------------------------------------------------|-------------------------------------------|
|            |               |                                    |                                                     |                                           |
| V          | 14113         | -                                  | 4.13e-01                                            | 4.06e-01                                  |
| triangle   | 75            | 4.36e-03                           | 9.06e-01                                            | 3.31e-01                                  |
| chain      | 98697         | 1.22e-05                           | 7.42e-01                                            | 4.12e-01                                  |
| star       | 112490        | -                                  | 3.65e-01                                            | 2.34e-01                                  |
| square     | 1058          | 1.80e-52                           | 6.15e-01                                            | 1.33e-02                                  |
| whisker    | 3535          | 1.11e-02                           | 8.58e-01                                            | 2.63e-01                                  |
| halfclique | 79            | 2.54e-05                           | 7.51e-01                                            | 3.11e-02                                  |
| clique     | 0             | 1.00e-00                           | 1.00e-00                                            | 8.50e-01                                  |

- Using the FDD model leads to very drastic results (constant accross examples)
- When everything is exceptional the model should be questioned !
- For ERMG, 2 motifs are exceptional in the PPI network of H. Pylori

| Ecoli      | N <sub>obs</sub> | FDD-Pv $_{\mathcal{P}\mathcal{A}}$ | $EDD\text{-}Pv_{\mathcal{P}\mathcal{A}}$ | $ERMG\text{-}Pv_\mathcal{PA}$ |
|------------|------------------|------------------------------------|------------------------------------------|-------------------------------|
|            |                  |                                    |                                          |                               |
| V          | 248093           | -                                  | 1.24e-08                                 | 4.46e-01                      |
| triangle   | 11368            | 0.00e+00                           | 7.02e-13                                 | 3.30e-01                      |
| chain      | 9557956          | 0.00e+00                           | 2.33e-10                                 | 4.68e-01                      |
| star       | 6425495          | -                                  | 1.14e-11                                 | 3.26e-01                      |
| square     | 487408           | 0.00e+00                           | 3.48e-23                                 | 3.10e-01                      |
| whisker    | 2154048          | 1.03e-265                          | 1.15e-12                                 | 3.49e-01                      |
| halfclique | 273621           | 1.24e-115                          | 1.09e-17                                 | 2.14e-01                      |
| clique     | 14882            | 2.61e-41                           | 3.30e-15                                 | 1.09e-01                      |

- The behavior of the EDD model is not satisfactory
- Motifs are either all exceptional or all non exceptional
- May be linked to a variable quality of fit of the model to the data.

| Scere      | N <sub>obs</sub> | FDD-Pv $_{\mathcal{P}\mathcal{A}}$ | $EDD\text{-}Pv_{\mathcal{P}\mathcal{A}}$ | $ERMG\operatorname{-Pv}_{\mathcal{PA}}$ |
|------------|------------------|------------------------------------|------------------------------------------|-----------------------------------------|
|            |                  |                                    |                                          |                                         |
| V          | 436131           | -                                  | 6.21e-33                                 | 1.44e-01                                |
| triangle   | 10567            | 1.31e-128                          | 1.13e-22                                 | 1.21e-06                                |
| chain      | 7530597          | 8.44e-99                           | 8.61e-27                                 | 1.38e-01                                |
| star       | 12227236         | -                                  | 3.11e-22                                 | 9.54e-03                                |
| square     | 165085           | 1.09e-322                          | 3.19e-22                                 | 2.73e-02                                |
| whisker    | 993733           | 1.64e-65                           | 9.33e-22                                 | 8.90e-04                                |
| halfclique | 116667           | 1.71e-33                           | 1.28e-18                                 | 7.22e-04                                |
| clique     | 8601             | 1.54e-10                           | 3.19e-16                                 | 5.25e-06                                |

- ERMG could be an alternative : Pvalues are moderate
- $\mu_{\mathsf{ERMG}}(\mathbf{m})$  depends on the number of groups
- Model averaging to stabilize the procedure

- ▶ We propose a method to assess the exceptionality of network motifs.
- The method to calculate the moments of the count is general and can be applied to any random graph model with exchangeable distribution
- The Geometric-Poisson approximation for the count distribution works well on simulated data.
- Directions: how to assess the distribution of the clump size. Is there a general method or does it depend on each motif ?