Uncovering structure in biological networks

J-J. Daudin[†], V. Lacroix[‡], <u>F. Picard</u>^{*}, S. Robin[†], M-F. Sagot[‡].

[†]UMR INAPG/ENGREF/INRA MIA 518, Paris, [‡] UMR 5558 Biométrie et Biologie Évolutive, Lyon, ^{*}UMR CNRS-8071/INRA-1152, Statistique et Génome, Évry.

Statistics for S	Systems Biology (SSB) group
INRA-MIG	E. Roquain, S. Schbath,
Stat. et Génome-Évry	E. Birmelé, C. Matias, V. Miele.

► Many scientific fields:

 \rightarrow biology,

 \rightarrow sociology, physics, "internet".

► Nature of the data under study:

 \rightarrow interactions between n elements,

 $ightarrow \mathcal{O}(n^2)$ possible interactions.

► Topology of the network:

 \rightarrow describes the way genes/proteins interact,

 \rightarrow structure/function relationship.

From Barabasi et al. (2004)

► Notations :

- ightarrow V a set of vertices in $\{1,\ldots,n\}$,
- ightarrow E a set of edges in $\{1,\ldots,n\}^2$,

 $\rightarrow \mathbf{X} = (X_{ij})$ the adjacency matrix such that $\{X_{ij} = 1\} = \mathbb{I}\{i \leftrightarrow j\}.$

► Possible graphs:

- \rightarrow directed: $X_{ij} \neq X_{ji}$,
- \rightarrow valuated: $X_{ij} \in \mathbb{R}$.

► Random graph definition :

 \rightarrow the distribution of X describes the topology of the network.

► Erdös Rényi (ER) model (1959) :

 $\rightarrow (X_{ij})$ independent, with Bernoulli distribution $\mathcal{B}(p)$.

The ER model and the degree distribution of real networks

- Degree distribution p_k :
 - $\rightarrow K_i = \sum_{j \neq i} X_{ij} \underset{ER}{\sim} \mathcal{P}(\lambda).$
- ► Real networks:
 - \rightarrow heterogeneous connectivity,
 - \rightarrow Scale-free networks: $K_i \sim k^{-\gamma}$.
 - \rightarrow Mecanistic interpretation.
 - \rightarrow No consensus for the form of p_k .
- Current strategies :
 - \rightarrow description of networks using p_k ,
 - \rightarrow theoretical results when p_k is fixed

Network of metabolic reactions (E. Coli).

 p_k does not give the distribution of X_{ij} .

- ► The clustering coefficient *c*:
 - $\rightarrow \Pr\{X_{jk} = 1 | X_{ij} = X_{ik} = 1\},\$
 - $ightarrow \Pr\{
 abla | \mathbf{V} \}$,
 - $\rightarrow c = p$ in ER.
 - \rightarrow real networks : high clustering coef.
 - \rightarrow Interpretation ?
- Community structure/modularity:
 - \rightarrow heterogeneity intra/inter-clusters,
 - \rightarrow modularity of biological networks,
 - \rightarrow current strategies are algorithmic,
 - \rightarrow choosing the number of modules ?

Community structure

Modelling connection heterogeneity

- \rightarrow hypothesis: there exists a hidden structure into Q classes of connectivity,
- $o \mathbf{Z} = (\mathbf{Z}_i)_i$, $Z_{iq} = \mathbb{I}\{i \in q\}$ are indep. hidden variables,
- $ightarrow oldsymbol{lpha} = \{ lpha_q \}$, the prior proportions of groups,
- \rightarrow (**Z**_{*i*}) $\sim \mathcal{M}(1, \boldsymbol{\alpha}).$

► X distribution

- \rightarrow conditional distribution : $X_{ij}|\{Z_{iq}Z_{j\ell}=1\}\sim \mathcal{B}(\pi_{q\ell}),$
- $ightarrow oldsymbol{\pi} = (\pi_{q\ell})$ is the connectivity matrix.
- \rightarrow Marginal distribution : $X_{ij} \sim \sum_{q\ell} \alpha_q \alpha_\ell \mathcal{B}(\pi_{q\ell})$,
- \rightarrow ERMG : "Erdös-Rényi Mixture for Graphs".

Degree distribution

- $\rightarrow K_i | \{ Z_{iq} = 1 \} \sim \mathcal{P}(\lambda_q), \ \lambda_q = (n-1)\bar{\pi}_q, \ \bar{\pi}_q = \sum_{\ell} \alpha_\ell \pi_{q\ell},$ $\rightarrow K_i \sim \sum_q \alpha_q \mathcal{P}(\lambda_q).$
- \rightarrow The mixture distribution of K_i is a sub-product of ERMG.
- \rightarrow It models the observed heterogeneity among degrees with an intuitive interpretation.
- Clustering coefficient : ERMG allows us to derive a probabilistic definition:

$$c = \sum_{q,\ell,m} \alpha_q \alpha_\ell \alpha_m \pi_{ql} \pi_{qm} \pi_{\ell m} \left/ \sum_{q,\ell,m} \alpha_q \alpha_\ell \alpha_m \pi_{q\ell} \pi_{qm} \right.$$

Log-likelihood(s) of the model:

- \rightarrow Observed data : $\mathcal{L}(\mathbf{X}) = \log \left(\sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z}) \right).$
- \rightarrow Complete data : $\mathcal{Q}(\mathbf{X}) = \mathbb{E} \left[\mathcal{L}(\mathbf{X}, \mathbf{Z}) | \mathbf{X} \right]$.
- \rightarrow EM-like strategies require the knowledge of $\Pr(\mathbf{Z}|\mathbf{X})$.
- \rightarrow In our case, this distribution is not tractable (no conditional independence).

Variational methods:

- $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]$ chosen such that $KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$ is minimal.
- \rightarrow Optimizing $\mathcal{J}(\mathcal{R}_{\mathbf{X}})$ w.r.t. $\mathcal{R}_{\mathbf{X}}$ gives an approximation of $\mathcal{L}(\mathbf{X})$ such that:

$$\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})).$$

 $\rightarrow \text{ If } \mathcal{R}_X[\mathbf{Z}] = \Pr(\mathbf{Z}|\mathbf{X}) \text{ then } \mathcal{J}(\mathcal{R}_X[\mathbf{Z}]) = \mathcal{L}(\mathbf{X}).$

 $\rightarrow \text{Moreover } \mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] \mathcal{L}(\mathbf{X}, \mathbf{Z}) \text{ (tractable)}$

- (h) Optimizing $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ w.r.t. $\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]$:
 - \rightarrow Restriction to a "confortable" class of distributions,
 - $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \boldsymbol{\tau}_{i})$, with $h(\bullet; \boldsymbol{\tau}_{i})$ the multinomial distribution.
 - $\rightarrow \tau_{iq}$ is the variational parameter to optimize using a fixed-point algorithm:

$$ilde{ au}_{iq} = \Pr\{Z_{iq} = 1 | \mathbf{X}, \tilde{\mathbf{Z}}^i\}$$

 $\rightarrow \tilde{\tau}_i$ is an approximation of the conditional expectation: $\tilde{\tau}_i = \mathbb{E}_{\mathcal{R}_{\mathbf{X}}}[\mathbf{Z}_i]$. (h+1) **Optimizing** $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ w.r.t. $(\boldsymbol{\alpha}, \boldsymbol{\pi})$:

 $\rightarrow \text{Constraint: } \sum_{q} \alpha_{q} = 1,$ $\rightarrow \tilde{\alpha}_{q} = \sum_{i} \tilde{\tau}_{iq} / n,$ $\rightarrow \tilde{\pi}_{q\ell} = \sum_{ij} \tilde{\tau}_{iq} \tilde{\tau}_{j\ell} X_{ij} / \sum_{ij} \tilde{\tau}_{iq} \tilde{\tau}_{j\ell}.$

► We derive a statistical criterion to select the number of classes, using the integrated likelihood of the complete data:

$$\mathcal{L}(\mathbf{X}, \mathbf{Z} | m_Q) = \int_{\mathbf{\Theta}} \mathcal{L}(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}, m_Q) g(\boldsymbol{\theta} | m_Q) \mathsf{d} \boldsymbol{\theta}.$$

► This likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|m_Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, m_Q) + \mathcal{L}(\mathbf{Z}|m_Q).$

► These terms can be penalized separately :

$$\mathcal{L}(\mathbf{X}|\mathbf{Z}, m_Q) \quad \to \quad \mathsf{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2},$$
$$\mathcal{L}(\mathbf{Z}|m_Q) \quad \to \quad \mathsf{pen}_{\mathbf{Z}} = (Q-1)\log(n).$$

$$ICL(m_Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{Q(Q+1)}{4} \log \frac{n(n-1)}{2} - \frac{Q-1}{2} \log(n).$$

Reaction Network of E.Coli :

- \rightarrow data from http://www.biocyc.org/,
- $\rightarrow n = 605$ vertices (reactions) and 1 782 edges.

 \rightarrow 2 reactions *i* and *j* are connected if the product of *i* is the substrate of *j* (cofactors excluded),

 \rightarrow V. Lacroix and M.-F. Sagot (INRIA - Hélix).

ERMG results:

- \rightarrow ICL gives $\hat{Q}=21$ classes.
- \rightarrow Most classes correspond to pseudo-cliques.
- \rightarrow Interpretation of the connectivity structure of classes ?
- \rightarrow Degree distribution ?
- \rightarrow Clustering coefficient?

- **Dot-plot** representation
 - \rightarrow adjacency matrix (sorted)
- ► Biological interpretation:
 - \rightarrow Groups 1 to 20 gather reactions involving all the same compound either as a substrate or as a product.
 - \rightarrow A compound (chorismate, pyruvate, ATP, *etc*) can be associated to each group.
- The structure of the metabolic network is governed by the compounds

► Biological interpretation:

 \rightarrow classes 1 and 16 consitute a clique which corresponds to a single compound (pyruvate).

 \rightarrow They are split into 2 sub-cliques because of their connection with classes 7 (CO2) and 10 (AcetylCoA)

Conne	ctivity	m	atrix	(san	n <mark>ple)</mark> :
q,ℓ	1	7	10	16	
1	1.0				
7	.11	.65			
10	.43		.67		
16	1.0	.01		1.0	

Adjacency matrix (sample)

Clustering coefficient

Empirical	$ERMG\;(Q=6)$	$ERMG\;(Q=21)$	$ER\;(Q=1)$
0.626	0.436	0.544	0.0098

13

► Flexibility of ERMG:

- \rightarrow ERMG is a probabilistic model which captures features of real-networks,
- \rightarrow it can be used to model various network topologies,
- \rightarrow it constitutes a promising alternative to existing methods.

Estimation and Model selection:

- \rightarrow variational approaches allow us to compute approximate MLE estimators when the dependency structure can not be simplified.
- \rightarrow We developed a statistical criterion to choose the number of classes (ICL).

Extensions:

- \rightarrow directed graphs and regulation networks,
- \rightarrow valuated graphs.

- ▶ Network motifs provide insights regarding the local organization of a network.
- Examples of motifs

- Denoting $N(\mathbf{m})$, the count of motif \mathbf{m} ,
 - \rightarrow ls $N_{obs}(\mathbf{m})$ exceptionnal ?
- ▶ Need of a probabilistic model under \mathcal{H}_0 :
 - \rightarrow ERMG can be used for this purpose.