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The network revolution

I Many scientific fields:

→ biology,

→ sociology, physics, ”internet”.

I Nature of the data under study:

→ interactions between n elements,

→ O(n2) possible interactions.

I Topology of the network:

→ describes the way genes/proteins

interact,

→ structure/function relationship.

From Barabasi et al. (2004)
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Mathematical tool: random graphs

I Notations :

→ V a set of vertices in {1, . . . , n},

→ E a set of edges in {1, . . . , n}2,

→ X = (Xij) the adjacency matrix such that {Xij = 1} = I{i ↔ j}.

I Possible graphs:

→ directed: Xij 6= Xji,

→ valuated: Xij ∈ R.

I Random graph definition :

→ the distribution of X describes the topology of the network.

I Erdös Rényi (ER) model (1959) :

→ (Xij) independent, with Bernoulli distribution B(p).
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The ER model and the degree distribution of real networks

I Degree distribution pk:

→ Ki =
P

j 6=i Xij ∼
ER
P(λ).

I Real networks:

→ heterogeneous connectivity,

→ Scale-free networks: Ki ∼ k−γ.

→ Mecanistic interpretation.

→ No consensus for the form of pk.

I Current strategies :

→ description of networks using pk,

→ theoretical results when pk is fixed
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pk does not give the distribution of Xij.
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The ER model and clustering

I The clustering coefficient c:

→ Pr{Xjk = 1|Xij = Xik = 1},

→ Pr{∇|V},

→ c = p in ER.

→ real networks : high clustering coef.

→ Interpretation ?

I Community structure/modularity:

→ heterogeneity intra/inter-clusters,

→ modularity of biological networks,

→ current strategies are algorithmic,

→ choosing the number of modules ?

Community structure
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ERMG: a new probabilistic model

I Modelling connection heterogeneity

→ hypothesis: there exists a hidden structure into Q classes of connectivity,

→ Z = (Zi)i, Ziq = I{i ∈ q} are indep. hidden variables,

→ α = {αq}, the prior proportions of groups,

→ (Zi) ∼M(1, α).

I X distribution

→ conditional distribution : Xij|{ZiqZj` = 1} ∼ B(πq`),

→ π = (πq`) is the connectivity matrix.

→ Marginal distribution : Xij ∼
P

q` αqα`B(πq`),

→ ERMG : ”Erdös-Rényi Mixture for Graphs”.
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Some properties of ERMG

I Degree distribution

→ Ki|{Ziq = 1} ∼ P(λq), λq = (n− 1)π̄q, π̄q =
P

` α`πq`,

→ Ki ∼
P

q αqP(λq).

→ The mixture distribution of Ki is a sub-product of ERMG.

→ It models the observed heterogeneity among degrees with an intuitive interpretation.

I Clustering coefficient : ERMG allows us to derive a probabilistic definition:

c =
X
q,`,m

αqα`αmπqlπqmπ`m

, X
q,`,m

αqα`αmπq`πqm .
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Parameters estimation

I Log-likelihood(s) of the model:

→ Observed data : L(X) = log (
P

Z expL(X, Z)).

→ Complete data : Q(X) = E [L(X, Z)|X].

→ EM-like strategies require the knowledge of Pr(Z|X).

→ In our case, this distribution is not tractable (no conditional independence).

I Variational methods:

→ RX[Z] chosen such that KL(RX[Z], Pr(Z|X)) is minimal.

→ Optimizing J (RX) w.r.t. RX gives an approximation of L(X) such that:

J (RX[Z]) = L(X)−KL(RX[Z], Pr(Z|X)).

→ If RX[Z] = Pr(Z|X) then J (RX[Z]) = L(X).

→ Moreover J (RX[Z]) = H(RX[Z])−
P

ZRX[Z]L(X, Z) (tractable)
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An iterative algorithm

(h) Optimizing J (RX[Z]) w.r.t. RX[Z]:

→ Restriction to a ”confortable” class of distributions,

→ RX[Z] =
Q

i h(Zi; τ i), with h(•; τ i) the multinomial distribution.

→ τiq is the variational parameter to optimize using a fixed-point algorithm:

τ̃iq = Pr{Ziq = 1|X, Z̃i}.

→ τ̃i is an approximation of the conditional expectation: τ̃i = ERX [Zi].

(h+1) Optimizing J (RX[Z]) w.r.t. (α, π):

→ Constraint:
P

q αq = 1,

→ α̃q =
P

i τ̃iq/n,

→ π̃q` =
P

ij τ̃iqτ̃j`Xij/
P

ij τ̃iqτ̃j`.
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Model selection criterion

I We derive a statistical criterion to select the number of classes, using the integrated

likelihood of the complete data:

L(X, Z|mQ) =

Z
Θ
L(X, Z|θ, mQ)g(θ|mQ)dθ.

I This likelihood can be split: L(X, Z|mQ) = L(X|Z, mQ) + L(Z|mQ).

I These terms can be penalized separately :

L(X|Z, mQ) → penX|Z =
Q(Q + 1)

2
log

n(n− 1)

2
,

L(Z|mQ) → penZ = (Q− 1) log(n).

ICL(mQ) = max
θ
L(X, Z̃|θ, mQ)− Q(Q+1)

4 log n(n−1)
2 − Q−1

2 log(n).
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Application

I Reaction Network of E.Coli :

→ data from http://www.biocyc.org/,

→ n = 605 vertices (reactions) and 1 782 edges.

→ 2 reactions i and j are connected if the product of i is the substrate of j (cofactors

excluded),

→ V. Lacroix and M.-F. Sagot (INRIA - Hélix).

I ERMG results:

→ ICL gives Q̂ = 21 classes.

→ Most classes correspond to pseudo-cliques.

→ Interpretation of the connectivity structure of classes ?

→ Degree distribution ?

→ Clustering coefficient?
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Biological interpretation of the groups

I Dot-plot representation

→ adjacency matrix (sorted)

I Biological interpretation:

→ Groups 1 to 20 gather reactions

involving all the same compound either

as a substrate or as a product.

→ A compound (chorismate,

pyruvate, ATP, etc) can be associated

to each group.

I The structure of the metabolic

network is governed by the

compounds
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Detailed example with pyruvate

I Biological interpretation:

→ classes 1 and 16 consitute a

clique which corresponds to a single

compound (pyruvate).

→ They are split into 2 sub-cliques

because of their connection with

classes 7 (CO2) and 10 (AcetylCoA)

I Connectivity matrix (sample):

q, ` 1 7 10 16

1 1.0

7 .11 .65

10 .43 .67

16 1.0 .01 1.0
Adjacency matrix (sample)
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Is ERMG more realistic than other models ?

Degree distribution (histogram and PP-plot)
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Conclusions

I Flexibility of ERMG:

→ ERMG is a probabilistic model which captures features of real-networks,

→ it can be used to model various network topologies,

→ it constitutes a promising alternative to existing methods.

I Estimation and Model selection:

→ variational approaches allow us to compute approximate MLE estimators when the

dependency structure can not be simplified.

→ We developed a statistical criterion to choose the number of classes (ICL).

I Extensions:

→ directed graphs and regulation networks,

→ valuated graphs.
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Perspectives: network motifs

I Network motifs provide insights regarding the local organization of a network.

I Examples of motifs

I Denoting N(m), the count of motif m,

→ Is Nobs(m) exceptionnal ?

I Need of a probabilistic model under H0:

→ ERMG can be used for this purpose.
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