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First years of array CGH data analysis

- First papers: (2002) Olshen et al.,

(2004) Fridlyand et al., Hupé et al.,

(2005) Picard et al.

- Motivations: find breakpoints, assign

a status to segments

- Frameworks: segmentation, HMMs,

smoothing.

- Algorithms: iterative split, EM,

Dynamic Programming

- Refinements: continuous time

HMMs, Bayesian segmentation, ...
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Using array CGH in the clinical context

- Early motivations of array CGH experiments was to study possible associations between

submicroscopic chromosomal aberrations and tumor progression or patient outcome

- Previous studies have shown that:

(i) Clustering analysis reveals that tumor type specific copy number patterns exist and

can be used for efficient classification

(ii) chromosomal regions have been shown to be associated with overall survival of

patients

(iii) genomic aberrations have been linked to differential response to various cancer

therapies.
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Towards multiple sample analysis

- Suppose that the cohort is made

of individuals with homogeneous

diagnosis

- The purpose is the joint

characterization of their CGH

profiles

- Broad diversity of genomic imbalances

(even for patients with homogeneous

diagnosis)
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Lack of unified methodology to analyze multiple CGH experiments

- New challenge

(i) Normalize the data: spatial analysis, pop-loess,

(ii) Integrate experimental design informations in the model (familial, clinical

informations)

(iii) Determine chromosomal aberrations at the cohort level ?

- Linear models are proposed to do (i)− (ii)− (iii) in an unified way.
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Interpreting a CGH profile
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Definitions and notations for segmentation models

- Suppose we observe the process Y = {Y1, . . . , Yn} such that the Yts are i.i.d. with

distribution N (µt, σ2)

- Then we suppose that there exists a sequence of change-points t1, . . . , tK such that

the mean of the signal is constant between two changes and different from a change to

another

- we denote by Ik =]tk−1, tk] this interval of stationarity and µk the mean of the signal

between two changes. Then the model is

∀t ∈ Ik, Yt = µk + Et, Et ∼ N (0, σ
2
)
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Linear models for the joint segmentation of multivariate signals

- We now observe Y m
t , the signal for patient m at position t with m = 1, ...M , such

that Y m
t ∼ N (µm

t , σ2)

- The mean of Y m
t is still subject to changes:

∀t ∈ I
m
k Y

m
t = µ

m
k + ε

m
t with ε

m
t ∼ N (0, σ

2
)

- We use the matricial formulation such that:

Y = Tµ + E

- µ corresponds to the set of parameters subject to changes,

- T corresponds to the set of breakpoint positions,

- Pure Partial Structural Change model (Bai and Perron 2003).
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Adding covariates in partial structural change models

- There are effects which concern the samples but which are not subject to changes

- How to integrate the experimental design in the global analysis ?

∀t ∈ I
m
k Y

m
t = µ

m
k + x

m
t θ + ε

m
t with ε

m
t ∼ N (0, σ

2
)

- We use the matricial formulation such that:

Y = Tµ + Xθ + E

- Partial structural change model

- But some effects may not concern the expectation of the signal only
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Introducing a random effect to account for dependencies

- The blind segmentation of multiple profiles is not the purpose of a joint analysis.

- We introduce some correlation of the profiles at every instants with a positional random

effect:

∀t ∈ I
m
k , Y

m
t = µ

m
k + x

m
t θ + Ut + E

m
t ,

- This allows us to model cov(Y m
t , Y m

t′ ) = σ2
u. The positional random effect captures

what is common across samples.

- With the matricial formulation: Y = Tµ + Xθ + ZU + E.

- Other random effects can be introduced, such as pedigree information

- Considering mixed model completely changes the estimation framework

9



Summary ofthe complete model

Notation Interpretation Estimation algorithm

X Design matrix of constant parameters -

θ Constant parameters Least-Squares

T Breakpoint positions Dynamic Programming

µ parameters subject to changes Dynamic Programming

Z Design matrix of random effects -

U ∼ N (0, G) Random Effects EM algorithm

E ∼ N (0, R) Error Least Squares
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A new computational issue for estimating breakpoint coordinates

- In the case of pure structural changes: Y = Tµ + E

- The purpose is to minimize the RSS:

RSSK(µ, T) = ‖Y − Tµ‖2
=

MX
m=1

KmX
k=1

RSS
m
k (µm, Tm)

=
MX

m=1

KmX
k=1

X
t∈Im

k

(ymt − µkm)
2
,

- But there is a constraint :
P

m Km = K, thus:

min
{T,µ}

RSSK(T, µ) = min
K1+...+KM=K

(
MX

m=1

min
Tm,µm

RSS
m
Km

(Tm, µm)

)

11



A two-stage Dynamic Programming procedure

- The blind application of DP to the multiple segmentation would lead to a procedure

with complexity O(n2M2)

- Stage 1 : optimization of individual RSSm
Km

(Tm, µm) for each patient

∀m ∈ [1, M ] {T̂m, µ̂m} = min
Tm,µm

RSS
m
Km

(Tm, µm).

- Stage 2 : the second step consists in solving:

min
K1+...+KM=K

MX
m=1

RSS
m
Km

(T̂m, µ̂m).

- the principle of the second stage is to spread segments among M patients

- This procedure is optimal and with a complexity O(λMn2[n + λM2]) (λ � 1)
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Segmenting large signals using CART - 1

- With the use of tiling arrays, the size

of one signal is huge : n ∼ 104

- the complexity of DP O(n2)

- DP performs an exhaustive search,

whereas some configurations may not

be relevant

- Reduce the number of configurations,

and perform the exhaustive search on

relevant ones only
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Figure 1: An example of a signal (f) and its assoiated CART tree (T).Then the olletion of partitions obtained from the maximal tree, , isinluded in and a partition orresponds to a pruned subtree,that is any binary subtree of the maximal one ontaining its root. In the ex-ample, the partition de�ned by the points at times , and is a subtreepruned from the maximal one, but the partition de�ned by the points at times13



Segmenting large signals using CART - 2

- Hybrid algorithm: Gey & Lebarbier

1. apply CART to give some potential

configurations O(n log(n)). (no

test sample, model selection is used

instead of CV).

2. perform the exhaustive search using

the obtained candidates

- simulations show that the performance

of the CART-based approaches are

close to the performance of the

exhaustive search
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Figure 3: Penalized estimators of obtained respetively by (a) CART and (b) hybridalgorithms. On (), the tree on whih the exhaustive searh is performed in the hyvridalgorithm, where o : removed hange-points, : kept hange-points and : added hange-points5 Simulation Studiestop : CART solution, middle : DP solution

bottom : ◦ removed, ∗ kept, + added breaks
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Mixed models and the EM algorithm

- Mixed models can be viewed as models with incomplete data whose parameters can be

estimated using the EM algorithm.

- Parameters are φ = (µ, θ, G, R, T) and the complete-data likelihood is such that:

logL(Y, U; φ) = logL(Y|U; θ, T, µ, R) + logL(U; G)

- Consequently taking the conditional expectation of this likelihood cond. to Y is

equivalent with calculating the BLUP of U, bU = Eφ {U|Y}

- This solves the E-step part.
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CM steps : conditional maximization steps

- The maximization step is broken down into simpler conditional maximization steps

- Estimation of θ with the classical least-squares estimator

X′R(h)−1Xθ
(h+1)

= X′R(h)−1
(Y − T(h)

µ
(h) − ZbU(h+1)

).

- Estimation of Variance components G(h+1) and R(h+1) (classical maximization)

- Estimation of T : the computation of this particular CM-step is equivalent to the

minimization of the residual sum of squares:

RSSK(µ, T) = ‖Y − Xθ
(h+1) − Tµ − ZbU(h+1)‖2

R(h+1)−1,

- This step is performed using the double-stage Dynamic Programming procedure.
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Results on 57 bladder tumors
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Results on 57 bladder tumors
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Interpretation

- 10 breakpoints detected without the random effect at position 85 vanish with the mixed

model

- The prediction of the random effect at this particular position is very large

- Interestingly, this position is known to be subject to polymorphism, meaning that it is

altered for many profiles of the cohort

- This suggests that the random effect reveals some intrinsic characteristics of the

sequence at a given position or of the position on the slide on which the concerned

genomic sequence is spotted (systematic technical ,artefact),

- whereas the segmentation part of the model Tµ reveals the biological information

specific to each profile.
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Perspectives - further developments

- The next step consists in generalizing the Segmentation/Clustering framework to the

multivariate case:

Y = TCµ + Xθ + ZU + E.

- C is a classification matrix which constraints the levels for every profiles. There is an

underlying random label variable S which is multinomial.

- Consequently, the estimation procedure will be more difficult since Y|U, S is not

Gaussian anymore

- A possibility would be to consider the positional effect as being fixed (which gives the

same results in practice)

- We are currently developping an R package to perform multiple sample analysis.
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Preprints and documents

- Linear Models for segmentation: Joint segmentation of multivariate Gaussian

processes using mixed linear models. F. Picard, E. Lebarbier, E. Budinska and S.

Robin

- CART for large samples: Using CART to detect multiple change points in the mean

for large samples. S. Gey and E. Lebarbier

- Reccurrent aberrations: Simultaneous occurrences of runs in independent Markov

chains. S. Robin and V. Stefanov

- all documents at http://genome.jouy.inra.fr/ssb/preprint/
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