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Observations are random sets of points

• We observe two independent sets of peaks location:

NA = {T1, . . . ,TnA} and NB = {T1, . . . ,TnB}.

• We model those sets by two heterogeneous Poisson processes with
intensity λA, λB in L2[0, 1].

• For any interval I ⊆ [0, 1],

NA(I ) ∼ P
(∫

I
λA(t)dt

)
and NB(I ) ∼ P

(∫
I
λB(t)dt

)

Aim

Testing λA = λB and detecting zones where λA 6= λB
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Global and local strategies

• The first strategy would be to test {λA = λB}, but lacks of
sensitivity (yes / no answer)

• Scan Statistics : sliding windows and the global Type-I error control
→ Asymptotic expansions of distribution tails
→ No strict testing framework
→ No real interpretation in terms of multiple testing
→ No satisfying FDR control yet

• Our strategy is local testing
→ Non asymptotic, non parametric
→ We provide a complete testing framework
→ We fill the gap between sliding windows and multiple testing
→ We provide a formal definition of the FDR in continuous time
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Avé les mains

• Consider an interval I ∈ [0, 1], and suppose that λA = λB on I

• Given NA(I ) + NB(I ) = n(I ), NA(I ) ∼ B(n(I ), 1/2)

• Our strategy is to perform conditional testing, given N = NA + NB .

• λ = λA + λB becomes a nuisance parameter

• The challenge is to do it for every possible window on [0, 1]
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Definition of the joint process

• From (NA,NB) we define the couple (N, ε)

• N = NA ∪ NB is the joint process of intensity λ = λA + λB ,

• and where ε = (εT )T∈N is a set of marks:

εT =

{
+1, if T ∈ NA,

−1, if T ∈ NB .
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Conditional distribution of the marks

• Conditionally to N, the distribution of the marks is:

P(εT = +1|N) =
λA(T )

λA(T ) + λB(T )

• We introduce notation:

∀t ∈ [0, 1], θ(t) =
λA(t)− λB(t)

λA(t) + λB(t)
.

• Conditionally to N, the distribution of the marks becomes:

εT |N ∼ 2B
(
θ(T ) + 1

2

)
− 1,
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Nuisance parameters and conditional testing

• The distribution of the joint process (N, ε) can be re-parametrized:

(N, ε) ∼ Pθ,λ

• λ and θ are unknown under the null, but are not “really” of interest

• We propose procedures that are conditional to the observed joint
process N.

Reparametrization of the test

Conditional to N, the new hypothesis focuses on ε and becomes θ = 0.
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An infinite set of local null hypothesis

• We propose a functional testing framework : λA = λB or θ = 0.

• The global strategy corresponds to the global null hypothesis.

• We consider local hypothesis:

H0,t :
{
θ(t) = 0

}
against H1,t :

{
θ(t) 6= 0

}
.

• The null hypothesis corresponding to{
∀t ∈ J, θ(t) = 0

}
⇔
{
H0 {J} =

⋂
t∈J

H0,t .
}

• The global null hypothesis corresponds to H0 {[0, 1]}.
• The null function on [0, 1] is denoted by θ0 in the sequel.
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Local testing with a cartoon

0 1
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Definition of scanning windows

• We introduce a resolution parameter η that is fixed

• Using the continuous testing framework, we perform a whole
continuum of tests for each interval of length η contained in [0, 1].

• We will distinguish sets of points (denoted by t) from sets of
windows center (denoted by x)

∀x ∈ Xη = [η/2, 1− η/2], Iη(x) = [x − η/2, x + η/2]

Our multiple testing procedures are based on single tests on H0 {Iη(x)}
for all possible window centers
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Is continuous testing computationally tractable ?

• Each observation Ti has a span η and will be used by the testing
procedure on [Ti − η/2,Ti + η/2]

• There exists a partition τ of Xη consisting in M intervals and with
inner breaks given by

τ =

( ⋃
T∈N
{T − η/2} ∪ {T + η/2}

)⋂
Xη,

• The set τ is chosen as the center of the observed windows

]τm−1, τm] are homogeneous intervals
in terms of composition N ∩ Iη(x)
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Count or position-based statistics

• The easiest possibility is to use the count and the p-value is explicit

Sη(x) = NA(Iη(x))

• Does not account for the spatial repartition of points within windows

• Define a statistics based an estimator of:

‖λA − λB‖2
Iη(x) =

∫
Iη(x)

(
λA(s)− λB(s)

)2
ds

• Kernel-based statistics is (n = N([0, 1]):

Sη(x) =
1

n(n − 1)

∑
T 6=T ′∈N∩Iη(x)

Kh

(
T − T ′

)
εT εT ′

• Small increase in performance in pratice
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Conditional testing and the p-value process

• We are interested in the distribution of Sη(x) under H0{Iη(x)}:

∀x ∈ Xη, Fθ0,N(s; x) = Pθ0

(
Sη(x) ≥ s|N

)
• Since the intensities are heterogeneous, we rather consider
p-values (normalize between [0, 1]):

∀x ∈ Xη, pη(x) = Fθ0,N

(
Sη(x); x

)
• Since Sη(x) is piece-wise constant,

(
pη(x)

)
x

is a piece-wise

constant process on [0,1].
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The p-value process with a cartoon

1
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Conditional Monte-Carlo approximation of the p-values
• Sample B independent draws of i.i.d. Rademacher sets of marks:

εb := (εbT )T∈N , for b = 1, ...,B

• Label the observed marks such that ε0 := (εT )T∈N , (first term of a
B + 1-sample of marks)

• The conditional distribution given N of the Rademacher process is:

εbT |N ∼ 2B (1/2)− 1,

• We obtain the estimated p-value process

p̂η(x) =
1

B + 1

(
1 +

B∑
b=1

1{
Sb
η(x)≥S0

η(x)
}) .

This parametrization guarantees that under H0{Iη(x)}:
∀α ∈ [0, 1], Pθ,λ

(
p̂η(x) ≤ α

)
≤ α.
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Approximation Sets
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Acceptation and Rejection Sets

• u is a threshold potentially depending on the data.

• A multiple testing procedure is defined by a rejection set:

Rη(u) := {x ∈ Xη : pη(x) < u} ,

• The set of accepted windows is denoted by

Aη(u) := {x ∈ Xη : pη(x) ≥ u} .

• Aη(u) is an approximation of

Jη0 :=
{
x ∈ Xη : ∀t ∈ Iη(x), θ(t) = 0

}
Challenge

How to evaluate the quality of threshold u ?
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False Positive Windows and the continuous FWER

• The target is the set of false positive windows

Jη0 ∩Rη(u)

• Its size can be measured by its Lebesgue measure:

Λ
(
Jη0 ∩Rη(u)

)
• The Family-Wise Error Rate in continuous time can be defined by

FWERηθ,λ(u) = Pθ,λ
(

Λ
(
Jη0 ∩Rη(u)

)
> 0
)
.

Aim

Calibrate uα ∈ [0, 1] such that FWERηθ,λ(uα) is controlled at level α
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Controlling the FWER in continuous time - 1

• The starting point is that we have for all u,{
Jη0 ∩Rη(u) 6= ∅

}
=

{
∃x ∈ Jη0 : pη(x) < u

}
=

{
inf
x∈Jη0
{pη(x)} < u

}
.

• Control the FWER by learning the distribution of the min. p-values
under the null.

• Consider the conditional α-quantile of the min. p-value process on
[0, 1]:

Uα
Jη0

= min

{
u ∈ [0, 1] : Pθ0

(
inf
x∈Jη0
{pη(x)} ≤ u

∣∣N )} .
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Controlling the FWER in continuous time - 2

• But the set of windows Jη0 is unknown: Choose the worst-case
scenario

• We compute the quantile of the min. of the p-value process on Xη:

Uα
Xη

= min

{
u ∈ [0, 1] : Pθ0

(
inf

x∈Xη

{pη(x)} ≤ u
∣∣N )} .

• This ensures the control of the FWER at level α

• This procedure can be extended to step-down approaches.
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FWER-Adjusted p-value process: the min-p procedure

• In practice we would like to use the adjusted p-value process:

∀x ∈ Xη, qη(x) = Fmin
θ0,N

(
pη(x)

)
• This requires to compute the distribution of the min-p under the null

∀z ∈ [0, 1], Fmin
θ0,N(z) = Pθ0,N

(
inf

x∈Xη

{pη(x)} ≤ z
∣∣ N)

• In practice we control the FWER using:

∀x ∈ Xη, q̂η(x) = F̂min
θ0,N

(
p̂η(x)

)
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The min-p procedure with a cartoon
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The weighted BH procedure with a cartoon
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Control of the FDR, a heuristic inspired by Blanchard et al.

• For a given threshold v (eventually depending on everything !),

FDRηθ,λ(R(v)) = Eθ,λ
(

Λ (Jη0 ∩R(v))

Λ (R(v))

)

• If one could find a v such that Λ(R(v))
Λ(Xη) ≥

v
α , then (as if v was

deterministic)

FDRηθ,λ(R(v)) ≤ α

Λ(Xη)

∫
Jη0

Pθ,λ (pη(x) ≤ v)

v
dΛ(x).

≤
αΛ(Jη0 )

Λ(Xη)
≤ α.
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A weighted step-up BH procedure

• Hence one needs the largest v such that Λ(R(v))
Λ(Xη) ≥

v
α ,

• Let τ be the partition that defines the windows:

Λ (Rη(v)) =
M−1∑
m=0

(τm+1 − τm)1{pη(τm)≤v}.

• Compute the weights wm = (τm+1 − τm)/(1− η)

• Denote {pm, 1 ≤ m ≤ M} = {pη(τm), 0 ≤ m ≤ M − 1} and order
this p-values in increasing order pσ(1) ≤ · · · ≤ pσ(M) for an
appropriate permutation σ of {1, . . . ,M};

• Consider k̂ = max{k ∈ {1, . . . ,M} : pσ(k) ≤ α
∑k

l=1 wσ(l)}

• Compute V α as α
∑k̂

l=1 wσ(l).
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BH-adjusted p-value process

• Let us denote by (qη(x))x∈Xη
the adjusted p-values of the step-up

procedure:

qη(x) = min
k:pσ(k)≥pη(x)

{
pσ(k)∑k
l=1 wσ(l)

}
.

• The decision at level α is simply to reject the nulls corresponding to
windows Iη(x) with adjusted p-values lower than α.

• We can check that

Rη(V α) = {x ∈ Xη : qη(x) ≤ α}.

Theorem

For the one-sided case with the p-values based on the NA(Iη(x)), the
FDR of RwBH is controlled by α.
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Simulations FWER (homogeneity)
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Simulations FDR (homogeneity)
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Density of replication origins along chromosome 16
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1 Point Process modeling of Genomic features

2 Test statistics and associated p-value process

3 Two error rates in continuous time
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Perspectives of our work

• We provide a framework to locally compare Poisson processes
intensities

• How procedures control the FWER and the FDR in continuous time

• This framework can be extended to one-sided hypothesis, and
one-sample testing (homogeneity)

• Provides a new look on scanning statistics (lack of proper definition
for FDR)

• Calibration of the windows size η

• Extension to 2D / 3D scans ?
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