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PP & Genomic Features

Outline

@ Point Process modeling of Genomic features

Continuous Testing 2/38



PP & Genomic Features

Observations are random sets of points

e We observe two independent sets of peaks location:
NA = {Tl, N TnA} and NB = {Tl, N TnB}-

o We model those sets by two heterogeneous Poisson processes with
intensity Aa, Ag in L2[0,1].
e For any interval I C [0, 1],

Na(l) ~ P </I/\A(t)dt> and  Ng(l)~P (/IAB(t)dt>

Aim

Testing Ay = Ag and detecting zones where Ay # Ag
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PP & Genomic Features

Global and local strategies

e The first strategy would be to test {\a = Ag}, but lacks of
sensitivity (yes / no answer)

e Scan Statistics : sliding windows and the global Type-| error control
— Asymptotic expansions of distribution tails
— No strict testing framework
— No real interpretation in terms of multiple testing
— No satisfying FDR control yet
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PP & Genomic Features p- Error Rates Simulations Application

Global and local strategies

e The first strategy would be to test {\a = Ag}, but lacks of
sensitivity (yes / no answer)

e Scan Statistics : sliding windows and the global Type-| error control
— Asymptotic expansions of distribution tails
— No strict testing framework
— No real interpretation in terms of multiple testing
— No satisfying FDR control yet

e Our strategy is local testing
— Non asymptotic, non parametric
— We provide a complete testing framework
— We fill the gap between sliding windows and multiple testing
— We provide a formal definition of the FDR in continuous time
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PP & Genomic Features

Avé les mains

e Consider an interval | € [0, 1], and suppose that Ay = Ag on /
e Given Na(l)+ Ng(1) = n(1), Na(l) ~ B(n(1),1/2)
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PP & Genomic Features

Avé les mains

Consider an interval | € [0,1], and suppose that Aa = Ag on /
Given Na(l)+ Ng(1) = n(1), Na(l) ~ B(n(/),1/2)
Our strategy is to perform conditional testing, given N = Ny + Np.

A= Aa + Ap becomes a nuisance parameter

The challenge is to do it for every possible window on [0, 1]
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PP & Genomic Features

Definition of the joint process

e From (Na, Ng) we define the couple (N, ¢)
o N = Ny U Npg is the joint process of intensity A = Aa + Ag,

e and where ¢ = (¢7)1ep is a set of marks:

{+1, if T € Ng,
ET =

-1, if T € Ng.

Na * L =
Np
N

Ty T, T3 Ty Ts Ts

£t +1 -1 -1 +1 +1 -1
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PP & Genomic Features

Conditional distribution of the marks

e Conditionally to N, the distribution of the marks is:

Aa(T)

Pler =+1N) = ) 1 2s(M)

e We introduce notation:

)\A(t) — )\B(t)

vVt e [0,1], 0(t) = M0 T s(D)

e Conditionally to N, the distribution of the marks becomes:

8T|N ~ 2B (Q(T;—i_l> -1,
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PP & Genomic Features

Nuisance parameters and conditional testing

e The distribution of the joint process (N, ¢) can be re-parametrized:
(N, E) ~ Pg’)\

e ) and @ are unknown under the null, but are not “really” of interest

o We propose procedures that are conditional to the observed joint
process N.

Reparametrization of the test

Conditional to N, the new hypothesis focuses on € and becomes 6 = 0.
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PP & Genomic Features

An infinite set of local null hypothesis

e We propose a functional testing framework : Ay = Ag or 6 = 0.
e The global strategy corresponds to the global null hypothesis.
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PP & Genomic Features

An infinite set of local null hypothesis

e We propose a functional testing framework : Ay = Ag or 6 = 0.

The global strategy corresponds to the global null hypothesis.

e We consider local hypothesis:

Hoe: {6(t) =0} against Hy,: {6(t) #0}.

The null hypothesis corresponding to

{Vt e J, 0(t) = 0} = {Ho =N Hoyt.}

teJ
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PP & Genomic Features : s s Simulations

An infinite set of local null hypothesis

e We propose a functional testing framework : Ay = Ag or 6 = 0.

The global strategy corresponds to the global null hypothesis.
e We consider local hypothesis:

Hoe: {6(t) =0} against Hy,: {6(t) #0}.

The null hypothesis corresponding to

{Vt e J, 0(t) = 0} = {Ho =N Hoyt.}

teJ

The global null hypothesis corresponds to H {[0, 1]}.

The null function on [0, 1] is denoted by 6y in the sequel.
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PP & Genomic Features

Local testing with a cartoon

0 +£0

I

0 T - T
y

Y

0=0
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PP & Genomic Features

Definition of scanning windows

e We introduce a resolution parameter 7 that is fixed

e Using the continuous testing framework, we perform a whole
continuum of tests for each interval of length 7 contained in [0, 1].

e We will distinguish sets of points (denoted by t) from sets of
windows center (denoted by x)

Vx e Xy =[n/2,1=n/2], ly(x) = [x =n/2,x+n/2]
I

Our multiple testing procedures are based on single tests on Ho {/,(x)}
for all possible window centers
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PP & Genomic Features

Is continuous testing computationally tractable 7
e Each observation T; has a span 1 and will be used by the testing
procedure on [T; —n/2, T; +n/2]
e There exists a partition 7 of A}, consisting in M intervals and with
inner breaks given by

T= (U {T—Tl/2}U{T+77/2}) ()%,

TeN

e The set 7 is chosen as the center of the observed windows

5 T T T3 Ty T: Ts
|Tm—1,7Tm] are homogeneous intervals - Mool 11 -1
o oo L(ty———
in terms of composition N N I,(x) ! —
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Test Stat & p-values

Outline

@ Test statistics and associated p-value process
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Test Stat & p-values

Count or position-based statistics

e The easiest possibility is to use the count and the p-valueis explicit

Sp(x) = Na(h(x))
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Test Stat & p-values

Count or position-based statistics
e The easiest possibility is to use the count and the p-valueis explicit
Sn(x) = Na(ly(x))

e Does not account for the spatial repartition of points within windows

e Define a statistics based an estimator of:

ha= sl = [ (3ale) = As(s)) o

n(x)
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Test Stat & p-values

Count or position-based statistics
e The easiest possibility is to use the count and the p-valueis explicit
Sn(x) = Na(ly(x))

e Does not account for the spatial repartition of points within windows

e Define a statistics based an estimator of:

ha= sl = [ (3ale) = As(s)) o

n(X)
o Kernel-based statistics is (n = N([0, 1]):

1
Sn(X):il Z Kh (T— T,) ETET
T#T'eNNl,(x)

e Small increase in performance in pratice
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Test Stat & p-values

Conditional testing and the p-value process

e We are interested in the distribution of S, (x) under Ho{/,(x)}:
Vx € Xy, Foon(six) =Py, (Sn(x) > s|/v)

e Since the intensities are heterogeneous, we rather consider
p-values (normalize between [0, 1]):

Vx € Xy, py(x) = FQO,N<S77(X);X>
e Since S,(x) is piece-wise constant, <pn(x)> is a piece-wise

constant process on [0,1].
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Test Stat & p-values

The p-value process with a cartoon

A .
py(x)
{T; € Na}
._; o{T, € Ng}
| Ten/2 Te-n/2
i I ‘i( — H—HH—HH—HH—

T 1o T3T4Ts Ts

€ 41 —1  —1+1+1 -1
=N

—
L(7) e
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Test Stat & p-values s Simulations

Conditional Monte-Carlo approximation of the p-values

e Sample B independent draws of i.i.d. Rademacher sets of marks:

eb = (%) ren, for b=1,...B

e Label the observed marks such that € := (e7)7ep, (first term of a

B + 1-sample of marks)
e The conditional distribution given N of the Rademacher process is:

ebIN ~2B(1/2) -1,

o We obtain the estimated p-value process

B
R 1
P(x) =51 (Hbz_:ll{ss(x)%%(x)}) ’
=

This parametrization guarantees that under Ho{/,(x)}:
Yo € [0, 1], P97A(ﬁn(x) < a) < a
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Outline

© Two error rates in continuous time
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Approximation Sets

A : :
5/\,4 /\Bé
, 0 IR
§ ) ={reX, Ve ()00 =0}
-% n/2) =1/2 §<<"E
%(JQ) ={re X, : Htel( 7’“)}
|




Acceptation and Rejection Sets

e u is a threshold potentially depending on the data.
o A multiple testing procedure is defined by a rejection set:

Ry(u) :={x € X, : py(x) < u},
e The set of accepted windows is denoted by

Ap(u) = {x e X, : py(x) > u}.
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Acceptation and Rejection Sets

e u is a threshold potentially depending on the data.
o A multiple testing procedure is defined by a rejection set:

Ry(u) :={x € X, : py(x) < u},
e The set of accepted windows is denoted by

Ap(u) = {x e X, : py(x) > u}.

e A,(u) is an approximation of

Ji = {xe X, : Vt e I,(x),6(t) = 0}

Challenge

How to evaluate the quality of threshold u ?
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False Positive Windows and the continuous FWER
e The target is the set of false positive windows
JINR,(v)
e Its size can be measured by its Lebesgue measure:
A O Ry ()
e The Family-Wise Error Rate in continuous time can be defined by

FWER],(u) = Po,, (A(Jg ARy (1)) > 0).
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False Positive Windows and the continuous FWER
e The target is the set of false positive windows
JINR,(v)
e Its size can be measured by its Lebesgue measure:
A O Ry ()
e The Family-Wise Error Rate in continuous time can be defined by

FWER],(u) = Po,, (A(Jg ARy (1)) > 0).

Aim
Calibrate u® € [0, 1] such that FWER] , (u®) is controlled at level «
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False Positive Windows and the continuous FDR

e The target is the set of false positive windows
Jo N Ry(u)
e Its size can be measure by its Lebesgue measure:
A(Jg N Ry(u))
e The False Discovery Rate in continuous time can be defined by

A (g ﬂRn(v))>

FDRy \(v) = Egx ( A (R(v))
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False Positive Windows and the continuous FDR
e The target is the set of false positive windows
Jo N Rp(u)
e Its size can be measure by its Lebesgue measure:
NG 0 Ry (w)
e The False Discovery Rate in continuous time can be defined by

A (g ﬂRn(v))>

FDRy \(v) = Egx ( A (R(v))

Aim
Calibrate v € [0, 1] such that FDR) ,(v®) is controlled at level a
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Controlling the FWER in continuous time - 1

e The starting point is that we have for all v,

{H N Ry(u) # 0}

{Elx ey : py(x) < u}

= inf < .
{x'ng (P ()} }
e Control the FWER by learning the distribution of the min. p-values

under the null.

o Consider the conditional a-quantile of the min. p-value process on
[0, 1]:

Uj‘g = min {u €[0,1] : Py, (Xigjn {pp(x)} < u ‘N) } .
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Controlling the FWER in continuous time - 2

But the set of windows Jg is unknown: Choose the worst-case
scenario

e We compute the quantile of the min. of the p-value process on X;:

U, = min {u €[0,1] : Py, (Xien;n {py(x)} <u \N) }

This ensures the control of the FWER at level o

This procedure can be extended to step-down approaches.

Continuous Testing 24/38



FWER-Adjusted p-value process: the min-p procedure

o In practice we would like to use the adjusted p-value process:

Vx € Xy, qy(x) = Fé‘;f',{, (Pn(X)>

o This requires to compute the distribution of the min-p under the null

Vz € [0,1], FN(2) = Poy < inf {py(x)} < z| N)
’ XEXy,
o In practice we control the FWER using:

vx € Xy, Gylx) = Fn ()
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The min-p procedure with a cartoon

min-p adjusted
p-value process

qn(z)

raw p-value process
AN

Py )

p-value
050
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The weighted BH procedure with a cartoon

min-p adjusted
p-value process

qn(z)

raw p-value process
AN

Py )

p-value
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d BH adjusted
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Control of the FDR, a heuristic inspired by Blanchard et al.

e For a given threshold v (eventually depending on everything !),

A (g m73(\/)))

FORY\(R(v) = Ean ("G00S0
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Control of the FDR, a heuristic inspired by Blanchard et al.

e For a given threshold v (eventually depending on everything !),

1 X v
Eon <A""”S> dA(x) (Fubini Th.)

ror i = [ 5 (B

Jo
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Control of the FDR, a heuristic inspired by Blanchard et al.

e For a given threshold v (eventually depending on everything !),

FDRg,)\(R(V)) = / Eg » </]\-pn(x)§v> dA(x) (Fubini Th.)

I (R(v)
e If one could find a v such that A/(\?)S]’))) > é then (as if v was

deterministic)

a Py (py(x) < v)
FDR} \(R(v)) < A /Jg y dA(x).
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A weighted step-up BH procedure

e Hence one needs the largest v such that /\/(\7(2)&:))) > 2,

e Let 7 be the partition that defines the windows:

M—1
ANRy(V)) = D (Tm+1 = Tm)L{py (rm)<v)-
m=0
e Compute the weights wy, = (Tmt+1 — ™m)/(1 — 1)

e Denote {pm,1 < m < M} ={p,(Tm),0 < m < M — 1} and order
this p-valuesin increasing order p,(1) < -+ < py(py) for an
appropriate permutation o of {1,..., M},

e Consider k = max{k € {1,..., M} : py) < 0‘2;(:1 Wo (1)}

e Compute V% as aZLl Wy (1)
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BH-adjusted p-value process

e Let us denote by (g,(x)) the adjusted p-values of the step-up

x€Xy,
procedure:

Po(k)
¥) = min <~k (-
Qn( ) = K:Po (k) >Pn( x){Z/ 1 0(/)}

e The decision at level « is simply to reject the nulls corresponding to
windows /,(x) with adjusted p-valueslower than .

e We can check that
Ry(VY) ={x € X, : gy(x) < a}.

For the one-sided case with the p-values based on the Na(l,(x)), the
FDR of R"B is controlled by o.

Continuous Testing 30/38



BH-adjusted p-value process

e Let us denote by (g,(x)) the adjusted p-values of the step-up
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Simulations

Outline

@ Simulations
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Simulations

Simulations FWER (homogeneity)
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Simulations

Simulations FDR (homogeneity)
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Application

Outline

@ Application
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Application

Density of replication origins along chromosome 16
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Application

Density of replication origins along chromosome 16
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Conclusion

Outline

@ Conclusions
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Conclusion

Perspectives of our work

o We provide a framework to locally compare Poisson processes
intensities

e How procedures control the FWER and the FDR in continuous time

e This framework can be extended to one-sided hypothesis, and
one-sample testing (homogeneity)

e Provides a new look on scanning statistics (lack of proper definition
for FDR)

o Calibration of the windows size n
e Extension to 2D / 3D scans ?
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