S. Ivanoff[‡], F. Picard*, V. Rivoirard[‡]

[‡]CEREMADE, Univ. Paris Dauphine,F-75775 Paris, France *LBBE, Univ. Lyon 1, F-69622 Villeurbanne, France

April 2016

- 1 Studying replication by high throughput sequencing
- 2 Poisson functional regression
- 3 Calibration of the Lasso weights
- 4 Simulation study
- 5 Application on OriSeq data

Next Generation Sequencing Data

- Massive parallel sequencing of DNA molecules
- Can be used to quantify DNA in a sample
- Expression, copy numbers, DNA-prot. interactions
- Focus on mapped data

OriSeq

OriSeq

- DNA replication: duplication of 1 molecule into 2 daughter molecules
- The exact duplication of mammalian genomes is strongly controlled
- Spatial control (loci choice)
- Temporal control (firing timing)
- ⇒ What are the (epi)genetic determinants of these controls?

Mapping human replication origins: a technical challenge

- "bubbles" are small and instable (last only minutes by cycle)
- no clear consensus sequence (like in S. Cerevisiae)
- their specification is associated with both DNA sequence and chromatin structure

Origin-Omics: SNS Sequencing

- DNA tiling arrays
- Sequencing (Ori-Seg)

OriSeq

- 1 Studying replication by high throughput sequencing
- 2 Poisson functional regression
- 3 Calibration of the Lasso weights
- 4 Simulation study
- 5 Application on OriSeq data

- Y_t the observed number of reads at position X_t on the genome, with t = 1, ..., n.
- Model sequencing data by functional Poisson regression

$$Y_t|X_t \sim \mathcal{P}\left(f_0(X_t)\right),$$

- **Goal**: estimate f_0 .
- f a candidate estimator of f_0 , decomposed on a functional dictionary with p elements $\{\varphi_1, \ldots, \varphi_p\}$:

$$\log f(x) = \sum_{j=1}^{p} \beta_j \varphi_j(x)$$

Dictionaries vs. basis approaches

- The basis approach is designed to catch specific features of the signal (p = n)
- If many features are present simultaneously ?
- Consider overcomplete dictionaries (p > n)
- Typical dictionaries: Histograms, Daubechies wavelets, Fourier

How to select the dictionary elements ?

Dictionaries vs. basis approaches

- The basis approach is designed to catch specific features of the signal (p = n)
- If many features are present simultaneously ?
- Consider overcomplete dictionaries (p > n)
- Typical dictionaries: Histograms, Daubechies wavelets, Fourier

How to select the dictionary elements ?

Dictionaries vs. basis approaches

- The basis approach is designed to catch specific features of the signal (p = n)
- If many features are present simultaneously ?
- Consider overcomplete dictionaries (p > n)
- Typical dictionaries: Histograms, Daubechies wavelets, Fourier

How to select the dictionary elements ?

A Penalized likelihood framework

- We consider a likelihood-based penalized criterion to select β ,
- We denote by **A** the $n \times p$ -design matrix with $A_{ij} = \varphi_j(X_i)$, $\mathbf{Y} = (Y_1, \dots, Y_n)^T$
- The log-likelihood of the model is:

$$\log \mathcal{L}(\boldsymbol{\beta}) = \sum_{j \in \mathcal{J}} \beta_j (\mathbf{A}^T \mathbf{Y})_j - \sum_{i=1}^n \exp \left(\sum_{j \in \mathcal{J}} \beta_j A_{ij} \right) - \sum_{i=1}^n \log (Y_i!),$$

Selection can be performed by the lasso such that:

$$\widehat{oldsymbol{eta}} \in rg \min_{oldsymbol{eta} \in \mathbb{R}^p} \left\{ -\log \mathcal{L}(oldsymbol{eta}) + \sum_{j=1}^p \lambda_j |eta_j|
ight\}.$$

- 1 Studying replication by high throughput sequencing
- 2) Poisson functional regression
- 3 Calibration of the Lasso weights
- 4 Simulation study
- **5** Application on OriSeq data

- Gaussian framework with noise variance σ^2 , weights for the Lasso $\propto \sigma \sqrt{\log p}$
- λ_j is used to control the fluctuations of $\mathbf{A}_i^T \mathbf{Y}$ around its mean,
- key role of V_j , a variance term (the analog of σ^2) defined by

$$V_j = \mathbb{V}(\mathbf{A}_j^T \mathbf{Y}) = \sum_{i=1}^n f_0(X_i) \varphi_j^2(X_i).$$

• For any j, we choose a data-driven value for λ_j as small as possible so that with high probability, for any $j \in \{1, ... p\}$,

$$\mathbf{A}_{j}^{T}(\mathbf{Y} - \mathbb{E}[\mathbf{Y}])| \leq \lambda_{j}.$$

• Let j be fixed and $\gamma > 0$ be a constant. Define $\widehat{V}_j = \sum_{i=1}^n \varphi_j^2(X_i) Y_i$ the natural unbiased estimator of V_i and

$$\widetilde{V}_j = \widehat{V}_j + \sqrt{2\gamma \log p \widehat{V}_j \max_i \varphi_j^2(X_i)} + 3\gamma \log p \max_i \varphi_j^2(X_i).$$

Let

$$\lambda_j = \sqrt{2\gamma \log p \widetilde{V}_j} + \frac{\gamma \log p}{3} \max_i |\varphi_j(X_i)|,$$

• then

$$\Pr\left(|\mathbf{A}_{j}^{T}(\mathbf{Y} - \mathbb{E}[\mathbf{Y}])| \geq \lambda_{j}\right) \leq \frac{3}{p^{\gamma}}.$$

Using the group Lasso for Poisson Functional Regression

• In some situations, coefficients can be grouped:

$$\{1,\ldots,p\}=G_1\cup\ldots\cup G_K$$

- For wavelets: group by scales for instance (or adjacent positions)
- In this case selection can be performed by the group-Lasso such that:

$$\widehat{oldsymbol{eta}} \in \operatorname*{arg\;min}_{oldsymbol{eta} \in \mathbb{R}^p} \left\{ -\log \mathcal{L}(oldsymbol{eta}) + \sum_{k=1}^K \lambda_k \|eta_{G_k}\|_2
ight\}.$$

• The block ℓ_1 -norm on \mathbb{R}^p is defined by:

$$\|\boldsymbol{\beta}\|_{1,2} = \sum_{k=1}^{K} \|\beta_{G_k}\|_2 = \sum_{k=1}^{K} \sqrt{\sum_{j \in G_k} |\beta_j|^2}$$

Form of the data-driven weights for the group-Lasso

- λ_k^g should depend on sharp estimates of the variance parameters $(V_j)_{j\in G_k}$
- Let $k \in \{1, ..., K\}$ be fixed and $\gamma > 0$ be a constant. Assume that there exists M > 0 such that for any x, $|f_0(x)| \le M$.
- Let

$$c_k = \sup_{\mathbf{x} \in \mathbb{R}^n} \frac{\|\mathbf{A}_{G_k} \mathbf{A}_{G_k}^T \mathbf{x}\|_2}{\|\mathbf{A}_{G_k}^T \mathbf{x}\|_2}.$$

• For all $j \in G_k$, still with $\widehat{V}_j = \sum_{i=1}^n \varphi_j^2(X_i) Y_i$, define

$$\widetilde{V}_{j}^{g} = \widehat{V}_{j} + \sqrt{2(\gamma \log p + \log |G_{k}|)\widehat{V}_{j} \max_{i} \varphi_{j}^{2}(X_{i})}
+ 3(\gamma \log p + \log |G_{k}|) \max_{i} \varphi_{j}^{2}(X_{i}).$$

• Let $\gamma > 0$ be fixed. Define $b_k^i = \sqrt{\sum_{j \in G_k} \varphi_j^2(X_i)}$ and $b_k = \max_i b_k^i$. Finally, we set

$$\lambda_k^{\mathbf{g}} = \left(1 + \frac{1}{2\sqrt{2\gamma\log p}}\right)\sqrt{\sum_{j\in G_k}\widetilde{V}_j^{\mathbf{g}}} + 2\sqrt{\gamma\log p}\,D_k,$$

 $D_k = 8Mc_k^2 + 16b_k^2\gamma\log p.$

$$\Pr\left(\|\mathbf{A}_{G_k}^T(\mathbf{Y} - \mathbb{E}[\mathbf{Y}])\|_2 \geq \lambda_k^g\right) \leq \frac{2}{p^{\gamma}}.$$

- We show that the associated Lasso / Group Lasso procedure are theoretically optimal (oracle inequalities).
- With a theoretical form for the weights, much computing power is spared!

- Studying replication by high throughput sequencing
- 3 Calibration of the Lasso weights
- 4 Simulation study

- We considered the classical Donoho & Johnstone functions (Blocks, bumps, doppler, heavisine)
- The intensity function f_0 is set such that (with $\alpha \in \{1, \dots, 7\}$)

$$f_0 = \alpha \exp g_0$$

- Observations are sampled on a fixed regular grid $(n = 2^{10})$ with $Y_t \sim \mathcal{P}(f_0(X_t))$.
- Use Daubechie, Haar and Fourier as elements of the dictionary
- Check the normalized reconstruction error:

$$MSE = \frac{\|\widehat{f} - f_0\|_2^2}{\|f_0\|_2^2}$$

• Compete with the Haar-Fisz transform and cross-validation

Estimated intensity functions (group-Lasso)

Choosing the best dictionary by cross-validation

Outline

- 1 Studying replication by high throughput sequencing
- 2 Poisson functional regression
- 3 Calibration of the Lasso weights
- 4 Simulation study
- **5** Application on OriSeq data

Promising results on OriSeq

Perspective for the integration of multiple datasets

- This model-based framework offers many perspectives for the analysis of peak-like data
- Comparison of two conditions (A vs B) and/or normalization

$$\log f_{A}(x) = \sum_{j \in \mathcal{J}} \beta_{j} \varphi_{j}(x)$$
$$\beta_{j} = \alpha_{j}^{B} + \gamma_{j}$$

- Extend to varying coefficients models $(\beta_i(x))$.
- Consider the Negative Binomial distribution
- Preprint: http://arxiv.org/abs/1412.6966