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Introduction, Presentation

Functional data analysis

More and more fields collect curve-like data (growth curves, mass
spectrometry, ...)

Functional data refers to observations that are curves sampled on a
fine grid

The usual statistical framework used to analyze such data is
nonparametric regression: (m = 1 . . . ,M)

Y (tm) = µ(tm) + E (tm), E (t) ∼ N (0, σ2).

Goal: recover function µ(t) from noisy observations
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Introduction, Presentation

Choosing wavelets when dealing with high dimensional data

Traditional approaches when dealing with functional data is to use a
functional basis (polynomial, splines, wavelets)

Splines have been long studied in longitudinal data analysis for
instance

Wavelets offer 3 main advantages:

→ The fine modeling of curves with irregularities

→ sparse representations

→ Computationally efficiency (the DWT is in O(M))
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Introduction, Presentation

Definition of wavelets and wavelet coefficients

Wavelets provide an orthonormal basis of L2(R) with a scaling
function φ and a mother wavelet ψ such that:{

φj0k(t), k = 0, . . . , 2j0 − 1;ψjk(t), j ≥ j0, k = 0, . . . , 2j − 1
}

Any function Y ∈ L2(R) is then expressed in the form:

Y (t) =
2j0−1∑
k=0

c∗j0kφj0k(t) +
∑
j≥j0

2j−1∑
k=0

d∗jkψjk(t)

where c∗j0k = 〈Y , φj0k〉 and d∗jk = 〈Y , φjk〉 are the theorical scaling
and wavelet coefficients.
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Introduction, Presentation

DWT and empirical wavelet coefficients

We observe function Y (t) on discrete sample points (tm),

Y(t) = [Y (t1), . . . ,Y (tM)]

The Discrete Wavelet Transform is given by

W
[M×M]

Y
[M×1]

=

[
c
d

]
W is an orthogonal matrix of filter (wavelet specific),

(c,d) are empirical wavelet coefficients such that:

c '
√
M × c∗

d '
√
M × d∗
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Introduction, Presentation

From non parametric to parametric linear models

Once the data have been projected in the functional domain we
retrieve a linear model such that:

WY(t) = Wµ(t) + WE(t)[
c
d

]
=

[
α
β

]
+ ε

The next step is often to threshold wavelet coefficients for
reconstruction purposes

Many strategies have been proposed among which the standard hard
thresholding rule [3] which sets to zero (djk)s whose absolute value
is lower than σ̂

√
2 log(M)
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Introduction, Presentation

Functional ANOVA

Experiments are now designed to collect sets of curves on different
individuals

We now observe many realizations of the same function which can
be modeled by functional models: i = 1, . . . ,N, m = 1 . . . ,M

Yi (tm) = Xiµ(tm) + Ei (tm), Ei (t) ∼ N (0, σ2).

µ(t) becomes a fixed functional effect, and X is its design matrix

Standard statistical questions can be assessed in the functional
setting: test of a functional effect, comparison of treatments...
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Introduction, Presentation

Functional Clustering Model (FCM)

Among “classical” questions, clustering has focused much attention

The idea is to cluster individuals based on functional observations

We suppose that the cluster structure concerns the fixed effects of
the model

When using a mixture model we introduce the label variable
ζi` ∼M (1,π = (π1, . . . , πL)) such that given {ζi` = 1}

Yi (tm) = Xiµ`(tm) + Ei (tm)

In the coefficient domain, a standard EM algorithm can be used to
estimate the parameters (case X = I) [2]:[

ci
di

]
=

[
α`
β`

]
+ εi .
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Introduction, Presentation

Application of Mass Spectrometry data

Each spectra contains 15154
ionised peptides defined by a
m/z ratio.

Available at
http://home.ccr.cancer.

gov/ncifdaproteomics/

ppatterns.asp

Samples from 253 women: 91
Controls, 162 Cases (ovarian
cancer) [6]
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Figure: MALDI-TOF Spectra (window
of 512).

Using a functional model on these data provides an EER ∼ 50% !
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Introduction, Presentation

Application to array CGH data

Each profile is CGH profile from
Breast Cancer patients

Samples from 55 profiles with
clinical informations [5]

Subgroup discovery (1q16q)

Super high inter-individual
variability
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Figure: Array CGH profiles from [5]

Using a functional model on these data provides an EER ∼ 50% !
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Functional Clustering with mixed effects

Functional Clustering Mixed Models

Mixed models are used to account for some structure in the
variability of the observations

Functional Mixed models are considered to introduce inter-individual
functional variability such that given {ζi` = 1}:

Yi (tm) = Xiµ`(tm) + ZiUi (tm) + Ei (tm)

Ui (t) ∼ N (0,K`(s, t)) are random functions independent of E (t)

In the wavelet domain, the model resumes to (case X = Z = I):[
ci
di

]
=

[
α`
β`

]
+

[
ν i
θi

]
+ εi ,[

ν i
θi

]
∼ N

(
0,

[
Gν 0
0 Gθ

])
.
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Functional Clustering with mixed effects

Specification of the covariance of random effects

We suppose that G is diagonal [4]

Then the fixed and random effects should lie in the same Besov
space. Introduce parameter η related to the regularity of process
Ui (t)

Theorem Abramovich & al. [1]

Suppose µ(t) ∈ Bs
p,q and V(θijk) = 2−jηγ2

θ then

Ui (t) ∈ Bs
p,q[0, 1] a.s. ↔

{
s + 1/2− η/2 = 0, if 1 ≤ p <∞ and q =∞
s + 1/2− η/2 < 0, otherwise.

The structure of the random effect can also vary wrt position and
scale (γ2

θ,jk), and/or group membership (γ2
θ,jk`)
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Functional Clustering with mixed effects

Dimensionality reduction step

Inspired by a strategy proposed in Antoniadis & al. [2] in two steps

Individual hard thresholding with the universal threshold σ̂ε
√

2 logM.

Use the average of the MAD estimators computed on each indidivual

This strategy seems reasonnable since:

V(d i
Jk) = σ2

ε + 2−Jηγ2
θ ' σ2

ε

Take union of selected coefficients

Removes positions that are non informative wrt to the clustering
goal (i.e positions that are zero for all individuals)
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Estimation and model selection

Using the EM algorithm

In the wavelet domain, the model is a Gaussian mixture model with
a structured variance

Both label variables ζ and random effects (ν,θ) are unobserved

The complete data log-likelihood can be written such that:

logL
(
c,d,ν,θ, ζ;π,α,β,G, σ2

ε

)
= logL

(
c,d|ν,θ, ζ;π,α,β, σ2

ε

)
+ logL (ν,θ|ζ;G)

+ logL (ζ;π) .

This likelihood can be easily computed thanks to the properties of
mixed linear models such that:[

ci
di

]∣∣∣∣ [ ν iθi
]
, {ζi` = 1} ∼ N

([
α` + ν i
β` + θi

]
, σ2

ε I

)
.
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Estimation and model selection

Predictions of hidden variables

The EM algorithm provides the posterior probability of membership
to cluster `,

τ
[h+1]
i` =

π
[h]
` f

(
ci ,di ;α

[h]
` ,β

[h]
` ,G

[h] + σ
2[h]
ε I

)
∑

p π
[h]
p f

(
ci ,di ;α

[h]
p ,β

[h]
p ,G[h] + σ

2[h]
ε I

) .
The E-step also provides the BLUP of random effects:

ν̂
[h+1]
i` =

(
ci −α

[h]
`

)
/
(

1 + λ[h]
ν

)
, λν = σ2

ε/γ
2
ν ,

θ̂
[h+1]

i` =
(
di − β

[h]
`

)
/
(

1 + 2jηλ
[h]
θ

)
, λθ = σ2

ε/γ
2
θ .
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Estimation and model selection

ML estimates for fixed effects & variance terms

the M-step provides the estimators of the mean curve coefficients
and and of the variance of the random effects

α
[h+1]
` =

n∑
i=1

τ
[h]
i`

(
ci − ν̂

[h]
i`

)
/N

[h]
` ,

β
[h+1]
` =

n∑
i=1

τ
[h]
i`

(
di − θ̂

[h]

i`

)
/N

[h]
` ,

γ
2[h+1]
θ =

1

n(M − 1)

∑
ijk`

2jητ
[h]
i`

(
θ̂2
ijk`

[h]
+

σ
2[h]
ε

1 + 2jηλ
[h]
θ

)
,

γ2[h+1]
ν =

1

n

∑
i`

(
ν̂2
i00`

[h]
+

σ
2[h]
ε

1 + λ
[h]
ν

)
.

Parameter η can be estimated using a golden search section
algorithm
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Estimation and model selection

Model selection using a BIC

mL stands for a clustering model with L clusters

We select the dimension that maximizes

BIC(mL) = logL
(
c,d; π̂, α̂, β̂, Ĝ, σ̂2

ε ,mL

)
− |mL|

2
× log(N).

|mL| = |α|+ |β|+ |G|+ |π| − 1 + |σ2
ε |

= (M + 1)L + |G|.

The dimension of G depends on the variance structure of the
random effects.

|G| = 2 is the case of constant variances (γ2
ν , γ

2
θ ), and |G| = ML

when variances depend on group, scale and position.
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Estimation and model selection

Model selection using a ICL

It is likely that predictions of random effects provide information
regarding L.

The ICL criterion is based on the integrated likelihood of the
complete data: logL(c,d,ν,θ, ζ|mL[γ2

` ])
Need to derive the integrated log-likelihood of the random effects
and for the label variables.

− 2

N
× ICL(mL[γ2

` ]) = M log RSS(c,d|ν̂, θ̂, τ )

+
∑
`

π̂`

(
log RSS`(ν̂, τ ) + (M − 1) log RSS`(θ̂, τ )

)
− 2

N

∑
`

{
log Γ

(
N̂`
2

)
+ log Γ

(
N̂`(M − 1)

2

)}

− 2
L∑
`=1

π̂` log(π̂`) +
(M + 1)L

N
× log(N).
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Simulations

Fine Definition of a simulation framework

We properly define the power of the signal:

lim
T→∞

1

T

∫ −T
2

T
2

∑
`

π`E
[
|µ`(t) + Ui (t)|

]2
dt

We need to control two terms:

SNR2
µ =

1

Mσ2
E

L∑
`=1

π`

2j0−1∑
k=0

α2
j0k` +

∑
j≥j0

2j−1∑
k=0

β2
jk`

 ,

λU = σ2
E/

(
γ2
ν +

γ2
θ

1− 2(1−η)

)
,
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Simulations

Simulated data with a low random effect λU = 4
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Simulations

Simulated data with a strong random effect λU = 1/4
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Simulations

Aim & design of the simulation study

What is the gain when using a functional random effect in terms of
clustering (FCM/FCMM)?

What is the performance of splines ?

Is dimension reduction appropriate ?

n = 50, M = 512, L = 2,

SNRµ ∈ {0.1; 1; 3; 5; 7}, λU ∈ {0.25, 1, 4}
Fixed effects can be Haar, Bumps, Heavisine, Doppler

Study the Empirical Error Rate:

EER =
1

N

N∑
i=1

I{ζ̂i` 6= ζi`}

Development of a package curvclust
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Simulations

Empirical Error Rates (2 clusters)
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Simulations

Empirical Error Rates (4 clusters)
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Simulations

Model selection BIC vs ICL
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Simulations

Union-set Dimension Reduction performance

FPR FNR % of selected coef

SNR2
µ / λU 0.25 1 4 0.25 1 4 0.25 1 4

0.1 68.7 81.4 90.3 2.8 1.4 1.1 7.5 4.2 2.5
1 68.4 78.1 82.9 3.8 2.6 2.2 8.4 5.8 4.6

Haar 3 67.8 75.5 77.2 7.7 6.8 6.7 11.7 9.7 9.4
5 69.1 75.0 75.8 8.6 7.9 7.8 12.3 10.7 10.5
7 70.0 75.2 75.7 8.8 8.2 8.0 12.3 10.9 10.7

0.1 91.3 94.1 96.7 2.3 2.3 2.3 7.0 4.9 3.1
1 88.8 91.8 92.6 2.3 2.3 2.3 8.9 6.7 6.1

Bumps 3 88.6 89.6 90.5 1.5 2.3 2.3 8.9 8.3 7.7
5 88.8 89.6 90.5 1.5 1.5 1.8 8.7 8.1 7.6
7 88.9 89.2 89.9 1.5 1.5 1.5 8.7 8.4 7.9

Table: FPR (non-thresholded among true null coefficients), FNR (thresholded
among non null coefficients) and percentage of selected wavelet coefficients
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Simulations

Time of execution

SNRµ
0.1 1 3 5 7

Haar 2.3 2.4 2.3 2.4 2.3
FCM Bumps 2.6 2.5 2.6 2.5 2.5

Haar 0.4 0.4 0.5 0.5 0.5
FCMunion Bumps 0.5 0.5 0.5 0.5 0.5

Haar 16.0 16.1 15.6 15.8 16.0
FCMM Bumps 16.1 16.3 15.2 15.3 15.4

Haar 6.9 7.1 7.6 7.6 7.6
FCMMunion Bumps 6.7 6.7 6.8 6.7 6.7

Haar 25.5 26.2 23.0 23.6 22.3
Spline Bumps 23.3 26.6 22.0 21.2 21.7

Table: Average time of execution in minutes for different models on simulated
data (n = 50 individuals, M = 512 positions).
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Simulations

Back to spectrometry data

Samples from 91 controls 162 cases [6]

We compete wavelet-based FCM on these data considering different
random effect structures.

Pre-treatment (baseline correction, peak alignment)

Results on a window of 512

m2 m2[γ2] m2[γ2
` ] m2[γ2

jk ] m2[γ2
jk`]

global alignment 38 24 24 23 23
group alignment 20 21 22 0.4 36

Inaccuracy in spectra-alignment is lethal for clustering !
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Simulations

Conclusions & perspectives

We developed a model for functional clustering with random effects

All the codes are available with the R package curvclust

Perspectives will mainly concern dimension reduction, supervised
classification and model selection

Perspectives in terms of application to piece-wise constant data like
array CGH data.
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Simulations
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